A mixed mechanochemical-ceramic solid-state synthesis as simple and cost effective route to high-performance LiNi0.5Mn1.5O4 spinels

被引:16
作者
Agostini, M. [1 ]
Matic, A. [1 ]
Panero, S. [2 ]
Croce, F. [3 ]
Gunnella, R. [4 ]
Reale, P. [5 ]
Brutti, S. [6 ]
机构
[1] Chalmers Univ Technol, Dept Appl Phys, S-41296 Gothenburg, Sweden
[2] Univ Roma La Sapienza, Dipartimen Chim, I-00185 Rome, Italy
[3] Univ G dAnnunzio, Dipartimento Farm, I-66100 Chieti, Italy
[4] Univ Camerino, Sch Sci & Technol, Camerino, Italy
[5] ENEA Ctr Ric Casaccia, Via Anguillarese 301, I-00123 Rome, Italy
[6] Univ Basilicata, Dipartimento Sci, I-85100 Potenza, Italy
关键词
LiNi0.5Mn1.5O4; mechanochemical synthesis; positive electrode materials; Lithium cells; IRREVERSIBLE CAPACITY; CATHODE MATERIALS; ION; BATTERIES; EVOLUTION; PROGRESS;
D O I
10.1016/j.electacta.2017.03.078
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The implementation of high potential materials as positive electrodes in high energy Li-ion batteries requires to develop scalable and smart synthetic routes. In the case of the LiNi0.5Mn1.5O4 (LNMO) spinel material, a successful preparation strategy must drive the phase formation in order to obtain structural, morphological and surface properties capable to boost performances in lithium cells and minimize the electrolyte degradation. Here we discuss a novel simple and easily scalable mechanochemical synthetic route, followed by a high temperature annealing in air, to prepare LMNO materials starting from oxides. A synergic doping with chromium and iron has been incorporated, resulting in the spontaneous segregation of a CrOx-rich surface layer. The effect of the annealing temperature on the physico-chemical properties of the LMNO material has been investigated as well as the effect on the performances in Licells. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:262 / 269
页数:8
相关论文
共 38 条
[1]  
Abrmoff MD., 2004, Image Processing with ImageJ, V11, P36, DOI DOI 10.1201/9781420005615.AX4
[2]   Synergistic effects of double substitution in LiNi0.5-yFeyMn1.5O4 spinel as 5 V cathode materials [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Lloris, JM ;
Vicente, CP ;
Tirado, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (01) :A13-A18
[3]   Evolution of the nanostructure of Pt and Pt-Co polymer electrolyte membrane fuel cell electrocatalysts at successive degradation stages probed by X-ray photoemission [J].
Ali, Mushtaq ;
Witkowska, Agnieszka ;
Abbas, Mamatimin ;
Gunnella, Roberto ;
Di Cicco, Andrea .
JOURNAL OF POWER SOURCES, 2014, 271 :548-555
[4]   Structure and insertion properties of disordered and ordered LN0.5Mn1.5O4 spinels prepared by wet chemistry [J].
Amdouni, N. ;
Zaghib, K. ;
Gendron, F. ;
Mauger, A. ;
Julien, C. M. .
IONICS, 2006, 12 (02) :117-126
[5]   Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries [J].
Brutti, Sergio ;
Greco, Giorgia ;
Reale, Priscilla ;
Panero, Stefania .
ELECTROCHIMICA ACTA, 2013, 106 :483-493
[6]   Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi0.5Mn1.5O4/nano-TiO2 Li-ion battery [J].
Brutti, Sergio ;
Gentili, Valentina ;
Reale, Priscilla ;
Carbone, Lorenzo ;
Panero, Stefania .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9792-9799
[7]  
Chi L.H., 2010, ELECTROCHIM ACTA, V55, P5110, DOI DOI 10.1016/J.ELECTACTA.2010.04.003
[8]   Solvent-Free and Catalysts-Free Chemistry: A Benign Pathway to Sustainability [J].
Gawande, Manoj B. ;
Bonifacio, Vasco D. B. ;
Luque, Rafael ;
Branco, Paula S. ;
Varma, Rajender S. .
CHEMSUSCHEM, 2014, 7 (01) :24-44
[9]   Investigation of the Chemical Disorder of LiN0.5Mn1.5O4 Lattice by Means of Extended X-ray Absorption Fine Structure Spectroscopy [J].
Greco, G. ;
Brutti, S. ;
Vitucci, F. M. ;
Lombardo, L. ;
Koentje, M. ;
Savoini, A. ;
Paolone, A. ;
Panero, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (46) :26471-26478
[10]   Recent progress in high-voltage lithium ion batteries [J].
Hu, Meng ;
Pang, Xiaoli ;
Zhou, Zhen .
JOURNAL OF POWER SOURCES, 2013, 237 :229-242