A CNN-BASED MULTICHANNEL INTERFEROMETRIC PHASE DENOISING METHOD APPLIED TO TOMOSAR IMAGING

被引:1
作者
Li, Jie [1 ,2 ,3 ]
Xu, Zhongqiu [1 ,2 ,3 ]
Li, Zhiyuan [1 ,2 ,3 ]
Zhang, Bingchen [1 ,2 ,3 ]
Wu, Yirong [1 ,3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
基金
中国国家自然科学基金;
关键词
SAR; CNN; Unsupervised learning; Image denoising; Tomography;
D O I
10.1109/IGARSS46834.2022.9884475
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Tomographic synthetic aperture radar (TomoSAR) is an advanced SAR interferometric technique to retrieve 3-D spatial information. However, decorrelation effects degrade the quality of interferometric phases, resulting in errors in the reconstruction. In this paper, we propose a denoising method based on the unsupervised convolution neural network (CNN) with a loss function combining the deterministic descriptive regularization and total variation (TV) term. It can improve both the accuracy and completeness of the reconstructed 3-D point clouds, which is verified by experiments on simulated and real SAR images.
引用
收藏
页码:3448 / 3451
页数:4
相关论文
共 5 条
  • [1] Boyd S., 2004, Convex Optimization, DOI 10.1017/CBO9780511804441
  • [2] Budillon A, 2019, INT GEOSCI REMOTE SE, P3625, DOI [10.1109/igarss.2019.8900616, 10.1109/IGARSS.2019.8900616]
  • [3] Chierchia G, 2017, INT GEOSCI REMOTE SE, P5438, DOI 10.1109/IGARSS.2017.8128234
  • [4] Nonlocal Filtering Applied to 3-D Reconstruction of Tomographic SAR Data
    D'Hondt, Olivier
    Lopez-Martinez, Carlos
    Guillaso, Stephane
    Hellwich, Olaf
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 272 - 285
  • [5] Samiei Esfahany S., 2017, EARTH OBSERV GEOMATI, V1, P1