Dromion and multi-soliton structures of the (2+1)-dimensional higher-order Broer-Kaup system

被引:19
作者
Lin, J [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Appl Phys, Shanghai 200030, Peoples R China
[2] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
关键词
D O I
10.1088/0256-307X/19/6/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the standard truncated Painleve analysis and the Backlund transformation, we can obtain many significant exact soliton solutions of the (2+1)-dimensional higher-order Broer-Kaup (HBK) system. A special type of soliton solution is described by the variable coefficient heat-conduction-like equation. The inclusion of three arbitrary functions in the general expressions of the solitons makes the solitons of the (2+1)-dimensional HBK system possess abundant structures such as solitoff solutions, multi-dromion solutions, ring solitons and so on.
引用
收藏
页码:765 / 768
页数:4
相关论文
共 35 条
[1]   The generalisation of integrable (2+1)-dimensional dispersive long-wave equations [J].
Alagesan, T ;
Uthayakumar, A ;
Porsezian, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (05) :1288-1290
[2]  
Bai CL, 2001, COMMUN THEOR PHYS, V35, P409
[3]   SCATTERING OF LOCALIZED SOLITONS IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MARTINA, L ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1988, 132 (8-9) :432-439
[4]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[5]   Explosion of soliton in a multicomponent plasma [J].
Das, GC ;
Sarma, J ;
Uberoi, C .
PHYSICS OF PLASMAS, 1997, 4 (06) :2095-2100
[6]   Gauge symmetry in background charge conformal field theory [J].
Dolan, L .
NUCLEAR PHYSICS B, 1997, 489 (1-2) :245-263
[7]   DROMIONS AND A BOUNDARY-VALUE PROBLEM FOR THE DAVEY-STEWARTSON-1 EQUATION [J].
FOKAS, AS ;
SANTINI, PM .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 44 (1-2) :99-130
[8]  
GARDNER CS, 1967, PHYS REV LETT, V19, P1095, DOI DOI 10.1103/PHYSREVLETT.19.1095
[9]   Optical solitary waves in the higher order nonlinear Schrodinger equation [J].
Gedalin, M ;
Scott, TC ;
Band, YB .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :448-451
[10]  
GU CH, 1992, LETT MATH PHYS, V26, P199, DOI 10.1007/BF00420753