On certain tilting modules for SL2

被引:1
作者
Martin, Samuel
机构
基金
英国工程与自然科学研究理事会;
关键词
Representation theory; Algebraic groups; SL2; Tilting modules; Induced module; Weyl module; Positive characteristic;
D O I
10.1016/j.jalgebra.2018.03.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete picture of when the tensor product of an induced module and a Weyl module is a tilting module for the algebraic group SL2 over an algebraically closed field of characteristic p. Whilst the result is recursive by nature, we give an explicit statement in terms of the p-adic expansions of the highest weight of each module. (C) 2018 The Author. Published by Elsevier Inc.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 50 条
[31]   Dominant dimension and tilting modules [J].
Nguyen, Van C. ;
Reiten, Idun ;
Todorov, Gordana ;
Zhu, Shijie .
MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (3-4) :947-973
[32]   Tilting Modules and Support τ-Tilting Modules over Preprojective Algebras Associated with Symmetrizable Cartan Matrices [J].
Changjian Fu ;
Shengfei Geng .
Algebras and Representation Theory, 2019, 22 :1239-1260
[33]   On L-packets and depth for SL2(K) and its inner form [J].
Aubert, Anne-Marie ;
Mendes, Sergio ;
Plymen, Roger ;
Solleveld, Maarten .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (10) :2544-2567
[34]   THE SECOND COHOMOLOGY OF SIMPLE SL2-MODULES [J].
Stewart, David I. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (02) :427-434
[35]   Web calculus and tilting modules in type C2 [J].
Bodish, Elijah .
QUANTUM TOPOLOGY, 2022, 13 (03) :407-458
[36]   Billiards and Tilting Characters for SL3 [J].
Lusztig, George ;
Williamson, Geordie .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[37]   An introduction to p-adic fields, harmonic analysis and the representation theory of SL2 [J].
Sally, PJ .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 46 (01) :1-47
[38]   Seifert-Torres type formulas for the Alexander polynomial from quantum sl2 [J].
Harper, Matthew .
TOPOLOGY AND ITS APPLICATIONS, 2022, 320
[39]   Semisimplification of the category of tilting modules for GLn [J].
Brundan, Jonathan ;
Entova-Aizenbud, Inna ;
Etingof, Pavel ;
Ostrik, Victor .
ADVANCES IN MATHEMATICS, 2020, 375
[40]   Balance functors and relative tilting modules [J].
Mao, Lixin .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04) :1040-1055