Experimental demonstration of cavity-free optical isolators and optical circulators

被引:45
作者
Li, En-Ze [1 ,2 ]
Ding, Dong-Sheng [1 ,2 ,3 ,4 ]
Yu, Yi-Chen [1 ,2 ]
Dong, Ming-Xin [1 ,2 ]
Zeng, Lei [1 ,2 ]
Zhang, Wei-Hang [1 ,2 ]
Ye, Ying-Hao [1 ,2 ]
Wu, Huai-Zhi [5 ,6 ]
Zhu, Zhi-Han [3 ,4 ]
Gao, Wei [3 ,4 ]
Guo, Guang-Can [1 ,2 ]
Shi, Bao-Sen [1 ,2 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Wang Da Heng Collaborat Innovat Ctr Sci Quantum M, Harbin 150080, Heilongjiang, Peoples R China
[4] Harbin Univ Sci & Technol, Harbin 150080, Peoples R China
[5] Fuzhou Univ, Fujian Key Lab Quantum Informat & Quantum Opt, Fuzhou 350116, Peoples R China
[6] Fuzhou Univ, Dept Phys, Fuzhou 350116, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
NON-RECIPROCITY; CROSS-PHASE; MODULATION;
D O I
10.1103/PhysRevResearch.2.033517
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cavity-free optical nonreciprocity components, which have an inherent strong asymmetric interaction between the forward- and backward-propagation direction of the probe field, are key to produce such as optical isolators and circulators. According to the proposal presented by Xia et al., [Phys. Rev. Lett. 121, 203602 (2018)], we experimentally build a device that uses cross-Kerr nonlinearity to achieve a cavity-free optical isolator and circulator. Its nonreciprocal behavior arises from the thermal motion of N-type configuration atoms, which induces a strong chiral cross-Kerr nonlinear response for the weak probe beam. We obtain a two-port optical isolator for up to 20 dB of isolation ratio in a specially designed Sagnac interferometer. The distinct propagation directions of the weak probe field determine its cross-phase shift and transmission, by which we demonstrate the accessibility of a four-port optical circulator.
引用
收藏
页数:6
相关论文
共 55 条
[1]   Observation of Asymmetric Transport in Structures with Active Nonlinearities [J].
Bender, N. ;
Factor, S. ;
Bodyfelt, J. D. ;
Ramezani, H. ;
Christodoulides, D. N. ;
Ellis, F. M. ;
Kottos, T. .
PHYSICAL REVIEW LETTERS, 2013, 110 (23)
[2]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[3]  
Chang L, 2014, NAT PHOTONICS, V8, P524, DOI [10.1038/nphoton.2014.133, 10.1038/NPHOTON.2014.133]
[4]   Silicon photonics broadband modulation-based isolator [J].
Doerr, C. R. ;
Chen, L. ;
Vermeulen, D. .
OPTICS EXPRESS, 2014, 22 (04) :4493-4498
[5]   Applications of magneto-optical waveguides in integrated optics:: review [J].
Dötsch, H ;
Bahlmann, N ;
Zhuromskyy, O ;
Hammer, M ;
Wilkens, L ;
Gerhardt, R ;
Hertel, P ;
Popkov, AF .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (01) :240-253
[6]   An All-Silicon Passive Optical Diode [J].
Fan, Li ;
Wang, Jian ;
Varghese, Leo T. ;
Shen, Hao ;
Niu, Ben ;
Xuan, Yi ;
Weiner, Andrew M. ;
Qi, Minghao .
SCIENCE, 2012, 335 (6067) :447-450
[7]  
Fang KJ, 2017, NAT PHYS, V13, P465, DOI [10.1038/NPHYS4009, 10.1038/nphys4009]
[8]  
Fang KJ, 2012, NAT PHOTONICS, V6, P782, DOI [10.1038/nphoton.2012.236, 10.1038/NPHOTON.2012.236]
[9]   Photonic Aharonov-Bohm Effect Based on Dynamic Modulation [J].
Fang, Kejie ;
Yu, Zongfu ;
Fan, Shanhui .
PHYSICAL REVIEW LETTERS, 2012, 108 (15)
[10]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488