Height map-based social force model for stairway evacuation

被引:21
|
作者
Li, Jinghai [1 ]
Chen, Maoyin [1 ]
Wu, Wenhan [1 ]
Liu, Binglu [1 ]
Zheng, Xiaoping [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Height map; Stairway; Social force model; Bottleneck phenomenon; Evacuation dynamics; DESCENT; ASCENT; MOVEMENT; DYNAMICS; BEHAVIOR; WALKING; AGE;
D O I
10.1016/j.ssci.2020.105027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stairway is ubiquitous in public places like shopping mall, theater and stadium. Due to the unevenness of the ground, the staircase often brings about undesirable effects in emergency evacuation, such as stumble, trampling and falling. Therefore, it is necessary to study the evacuation dynamics of pedestrians on the stairway in-depth. However, the widely studies social force model fails to take into account the effect of ground topography on stair movement. In this paper, an extended social force model based on height map is proposed. This kind of model can accurately reproduce the temporal-spatial pedestrian dynamics on the stairway. Simulations indicate that the pedestrian flow on the stairway is not only constrained by geometric narrowing, but also restricted by the ground topography. Most of all, the discontinuous feature of height variance led to the fluctuation of velocity and further constrain the traffic capacity of stairs. Higher aspiration levels result in speed variance during emergency evacuation, and further induce congestion near the transitions between horizontal way and the stairs. The danger of clogging induced by transitions can be minimized by replacing staircases with ramps.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model
    Song Wei-Guo
    Yu Yan-Fei
    Wang Bing-Hong
    Fan Wei-Cheng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 371 (02) : 658 - 666
  • [42] Modeling Crowd Evacuation via Behavioral Heterogeneity-Based Social Force Model
    Wu, Wenhan
    Li, Jinghai
    Yi, Wenfeng
    Zheng, Xiaoping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 15476 - 15486
  • [43] Modeling and Simulation of Subway Station Emergency Evacuation Based on Improved Social Force Model
    Zhang, Le
    Gao, Na
    Li, Jiayang
    Dai, Xiang
    Song, Bowei
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 10 - 14
  • [44] A Social Force-Based Model for Pedestrian Evacuation with Static Guidance in Emergency Situations
    Zhang, Ping
    Liu, Wenjun
    Yang, Lizhong
    Wu, Jinzhong
    Wang, Kaixuan
    Cui, Yujie
    FIRE-SWITZERLAND, 2025, 8 (01):
  • [45] Modified social force model based on information transmission toward crowd evacuation simulation
    Han, Yanbin
    Liu, Hong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 469 : 499 - 509
  • [46] An extended social force model for pedestrian evacuation under disturbance fluctuation force
    Wei Juan
    Fan Wenjie
    Guo Yangyong
    Hu Jun
    Fang Yuanyuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (07):
  • [47] Map-based neuron networks
    Ibarz, Borja
    Cao, Hongjun
    Sanjuan, Miguel A. F.
    COOPERATIVE BEHAVIOR IN NEURAL SYSTEMS, 2007, 887 : 69 - +
  • [48] Map-based Interfaces and Interactions
    Masoodian, Masood
    Luz, Saturnino
    PROCEEDINGS OF THE WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES AVI 2022, 2022,
  • [49] Map-Based UAV mmWave Channel Model and Characteristics Analysis
    Jiang, Shan
    Zhu, Qiuming
    Wang, Cheng-Xiang
    Mao, Kai
    Xie, Wenping
    Zhong, Weizhi
    Yao, Mengtian
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC WORKSHOPS), 2020, : 23 - 28
  • [50] A map-based model predictive control approach for train operation
    Hauck, Michael
    Schmidt, Patrick
    Kobelski, Alexander
    Streif, Stefan
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,