Theoretical and experimental study of the role of cell-cell dipole interaction in dielectrophoretic devices: application to polynomial electrodes

被引:18
作者
Camarda, Massimo [1 ]
Fisicaro, Giuseppe [1 ]
Anzalone, Ruggero [1 ]
Scalese, Silvia [1 ]
Alberti, Alessandra [1 ]
La Via, Francesco [1 ]
La Magna, Antonino [1 ]
Ballo, Andrea [2 ]
Giustolisi, Gianluca [2 ]
Minafra, Luigi [3 ]
Cammarata, Francesco P. [3 ]
Bravata, Valentina [3 ]
Forte, Giusi I. [3 ]
Russo, Giorgio [3 ]
Gilardi, Maria C. [3 ]
机构
[1] CNR IMM Sez Catania, I-95121 Catania, Italy
[2] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, Catania, Italy
[3] Ist Bioimmagini & Fisiol Mol IBFM CNR LATO, Cefalu, Sicilia, Italy
关键词
NANOTUBES;
D O I
10.1186/1475-925X-13-71
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: We aimed to investigate the effect of cell-cell dipole interactions in the equilibrium distributions in dielectrophoretic devices. Methods: We used a three dimensional coupled Monte Carlo-Poisson method to theoretically study the final distribution of a system of uncharged polarizable particles suspended in a static liquid medium under the action of an oscillating non-uniform electric field generated by polynomial electrodes. The simulated distributions have been compared with experimental ones observed in the case of MDA-MB-231 cells in the same operating conditions. Results: The real and simulated distributions are consistent. In both cases the cells distribution near the electrodes is dominated by cell-cell dipole interactions which generate long chains. Conclusions: The agreement between real and simulated cells' distributions demonstrate the method's reliability. The distribution are dominated by cell-cell dipole interactions even at low density regimes (10(5) cell/ml). An improved estimate for the density threshold governing the interaction free regime is suggested.
引用
收藏
页数:10
相关论文
共 30 条
[1]  
Arun T. J., 2004, ELECTROPHORESIS, V25, P3625
[2]   Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis [J].
Castillo, Jaime ;
Tanzi, Simone ;
Dimaki, Maria ;
Svendsen, Winnie .
ELECTROPHORESIS, 2008, 29 (24) :5026-5032
[3]   Dielectrophoresis in microfluidics technology [J].
Cetin, Barbaros ;
Li, Dongqing .
ELECTROPHORESIS, 2011, 32 (18) :2410-2427
[4]   Controlled Positioning of Carbon Nanotubes by Dielectrophoresis: Insights into the Solvent and Substrate Role [J].
Duchamp, Martial ;
Lee, Kyumin ;
Dwir, Benjamin ;
Seo, Jin Won ;
Kapon, Eli ;
Forro, Laszlo ;
Magrez, Arnaud .
ACS NANO, 2010, 4 (01) :279-284
[5]   Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation [J].
Gascoyne, Peter R. C. ;
Shim, Sangjo ;
Noshari, Jamileh ;
Becker, Frederick F. ;
Stemke-Hale, Katherine .
ELECTROPHORESIS, 2013, 34 (07) :1042-1050
[6]   Isolation of rare cells from cell mixtures by dielectrophoresis [J].
Gascoyne, Peter R. C. ;
Noshari, Jamileh ;
Anderson, Thomas J. ;
Becker, Frederick F. .
ELECTROPHORESIS, 2009, 30 (08) :1388-1398
[7]   DIELECTROPHORESIS AND ELECTROROTATION OF NEUROSPORA SLIME AND MURINE MYELOMA CELLS [J].
GIMSA, J ;
MARSZALEK, P ;
LOEWE, U ;
TSONG, TY .
BIOPHYSICAL JOURNAL, 1991, 60 (04) :749-760
[8]   ApoStream™, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood [J].
Gupta, Vishal ;
Jafferji, Insiya ;
Garza, Miguel ;
Melnikova, Vladislava O. ;
Hasegawa, David K. ;
Pethig, Ronald ;
Davis, Darren W. .
BIOMICROFLUIDICS, 2012, 6 (02)
[9]   ELECTRODE DESIGN FOR NEGATIVE DIELECTROPHORESIS [J].
HUANG, Y ;
PETHIG, R .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1991, 2 (12) :1142-1146
[10]  
Hughes MP, 2002, ELECTROPHORESIS, V23, P2569, DOI 10.1002/1522-2683(200208)23:16<2569::AID-ELPS2569>3.0.CO