The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion

被引:32
作者
Ciesielski, Mariusz [1 ]
Klimek, Malgorzata [2 ]
Blaszczyk, Tomasz [2 ]
机构
[1] Czestochowa Tech Univ, Inst Comp & Informat Sci, Ul Dabrowskiego 73, PL-42200 Czestochowa, Poland
[2] Czestochowa Tech Univ, Inst Math, Al Armii Krajowej 21, PL-42200 Czestochowa, Poland
关键词
Fractional Sturm-Liouville problem; Fractional calculus; Numerical solution; Fractional diffusion; OSCILLATOR EQUATION;
D O I
10.1016/j.cam.2016.12.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical method of solving the fractional eigenvalue problem is derived in the case when the fractional Sturm-Liouville equation is subjected to the mixed boundary conditions. This non-integer order differential equation is discretized to the scheme with the symmetric matrix representing the action of the numerically expressed composition of the left and the right Caputo derivative. The numerical eigenvalues are thus real, and the eigenvectors associated to distinct eigenvalues are orthogonal in the respective finite dimensional Hilbert space. The advantage of the proposed method is the formulation which allows us to construct the approximate eigenfunctions which form an orthonormal function system in the infinite-dimensional weighted Lebesgue integrable function space. The developed numerical method of calculation of the eigenvalues and eigenfunctions is then applied in construction of the approximate solution to the 1D space-time fractional diffusion problem in a bounded domain. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:573 / 588
页数:16
相关论文
共 25 条
[1]   A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus [J].
Agrawal, Om P. ;
Hasan, M. Mehedi ;
Tangpong, X. W. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (02)
[2]  
[Anonymous], P 13 INT CARP CONTR
[3]   Fractional Bateman-Feshbach Tikochinsky Oscillator [J].
Baleanu, Dumitru ;
Asad, Jihad H. ;
Petras, Ivo .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (02) :221-225
[4]   Numerical solution of fractional oscillator equation [J].
Blaszczyk, T. ;
Ciesielski, M. ;
Klimek, M. ;
Leszczynski, J. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) :2480-2488
[5]  
Blaszczyk T, 2015, ROM REP PHYS, V67, P350
[6]   Fractional oscillator equation - Transformation into integral equation and numerical solution [J].
Blaszczyk, Tomasz ;
Ciesielski, Mariusz .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :428-435
[7]   Numerical solution of fractional Sturm-Liouville equation in integral form [J].
Blaszczyk, Tomasz ;
Ciesielski, Mariusz .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :307-320
[8]   Variational integrator for fractional Euler-Lagrange equations [J].
Bourdin, Loic ;
Cresson, Jacky ;
Greff, Isabelle ;
Inizan, Pierre .
APPLIED NUMERICAL MATHEMATICS, 2013, 71 :14-23
[9]   Numerical solution of non-homogenous fractional oscillator equation in integral form [J].
Ciesielski, Mariusz ;
Blaszczyk, Tomasz .
Journal of Theoretical and Applied Mechanics (Poland), 2015, 53 (04) :959-968
[10]   Fractional Sturm-Liouville problem [J].
Klimek, M. ;
Agrawal, O. P. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :795-812