Flow of micropolar and viscoplastic fluids in a Hele-Shaw cell

被引:10
作者
Shelukhin, V. V. [1 ]
Neverov, V. V.
机构
[1] Russian Acad Sci, Siberian Branch, MA Lavrentev Hydrodynam Inst, Novosibirsk 630090, Russia
关键词
micropolar viscoplastic fluid; yield stress; Hele-Shaw cell; extension of Darcy's law;
D O I
10.1134/S0021894414060017
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A generalization of Darcy's law relating the velocity averaged over the transverse coordinate and the pressure gradient is obtained for flows in a thin layer. A nonlinear Darcy's law with a limiting gradient is derived taking into account microrotations and the yield stress. It is shown that the micropolarity of fluids manifests itself as an increase in the apparent viscosity and the limiting pressure gradient. A generalization of Darcy's law for the case of pseudo-plastic and dilatant Herschel-Bulkley fluids is obtained.
引用
收藏
页码:905 / 916
页数:12
相关论文
共 15 条
[1]   Nonhomogeneous Incompressible Herschel-Bulkley Fluid Flows Between Two Eccentric Cylinders [J].
Amirat, Youcef ;
Shelukhin, Vladimir V. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (04) :635-661
[2]  
[Anonymous], 2012, Microcontinuum field theories: I. Foundations and solidsM
[3]  
[Anonymous], 1984, HYDRODYNAMICS HEAT E
[4]   Nonhomogeneous incompressible Bingham viscoplastic as a limit of nonlinear fluids [J].
Basov, I. V. ;
Shelukhin, V. V. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 142 (1-3) :95-103
[5]  
Basov IV, 1999, Z ANGEW MATH MECH, V79, P185, DOI 10.1002/(SICI)1521-4001(199903)79:3<185::AID-ZAMM185>3.0.CO
[6]  
2-N
[7]  
Cosserat E., 1909, Theorie des corps deformables
[8]  
Duvaut G., 1976, INEQUALITIES MECH PH, Vfirst, DOI [10.1007/978-3-642-66165-5, DOI 10.1007/978-3-642-66165-5]
[9]  
Economides M.J., 2000, Reservoir Simulation, VThird
[10]  
Hieber C.A., 1987, Injection and Compression Molding Fundamentals