Attenuation of Acoustic-Gravity Waves in an Isothermal Atmosphere: Consideration with the Modified Navier-Stokes and Heat-Transfer Equations

被引:2
作者
Fedorenko, A. K. [1 ]
Kryuchkov, E. I. [1 ]
Cheremnykh, O. K. [1 ]
机构
[1] Natl Acad Sci Ukraine, State Space Agcy Ukraine, Space Res Inst, UA-03187 Kiev, Ukraine
基金
新加坡国家研究基金会;
关键词
acoustic-gravity wave; atmosphere; molecular viscosity; thermal conductivity; OSCILLATIONS; PROPAGATION; PENETRATION; VISCOSITY;
D O I
10.3103/S0884591320050049
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Within the model of a dissipative isothermal atmosphere, the attenuation of acoustic-gravity waves (AGWs) is studied on the basis of the modified Navier-Stokes and heat-transfer equations. Besides the usually considered velocity gradient, the modification of these equations takes into account the additional transfer of the momentum and energy induced by AGWs due to the density gradient. This results in that additional terms appear in the hydrodynamic equations of motion and heat transfer. Under these assumptions, the local dispersion equation for AGWs in an isothermal dissipative atmosphere, as well as an expression for the damping decrement, is obtained. In the limiting cases of high frequencies (sound waves) and low frequencies (gravitational waves), the nature of the attenuation allows a clear physical interpretation. Special aspects of the time-dependent attenuation for the evanescent acoustic-gravity modes of various types, including the Lamb waves and Brent-Vaisala oscillations, are also considered.
引用
收藏
页码:212 / 221
页数:10
相关论文
共 25 条
[1]  
Beer T., 1974, Atmospheric Waves
[2]   THE INFLUENCE OF COMPRESSIBILITY AND NON-ISOTHERMALITY OF THE ATMOSPHERE ON THE PROPAGATION OF ACOUSTIC-GRAVITY WAVES [J].
Cheremnykh, O. K. ;
Selivanov, Yu. A. ;
Zakharov, I. V. .
SPACE SCIENCE AND TECHNOLOGY-KOSMICNA NAUKA I TEHNOLOGIA, 2010, 16 (01) :9-19
[3]   Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization and applications to the Earth and solar atmospheres [J].
Cheremnykh, Oleg K. ;
Fedorenko, Alla K. ;
Kryuchkov, Evgen I. ;
Selivanov, Yuriy A. .
ANNALES GEOPHYSICAE, 2019, 37 (03) :405-415
[4]   Numerical estimates for the bulk viscosity of ideal gases [J].
Cramer, M. S. .
PHYSICS OF FLUIDS, 2012, 24 (06)
[5]   THE THERMAL CONDUCTIVITY AND VISCOSITY OF ATOMIC OXYGEN [J].
DALGARNO, A ;
SMITH, FJ .
PLANETARY AND SPACE SCIENCE, 1962, 9 (01) :1-2
[6]   A dominant acoustic-gravity mode in the polar thermosphere [J].
Fedorenko, A. K. ;
Bespalova, A. V. ;
Cheremnykh, O. K. ;
Kryuchkov, E. I. .
ANNALES GEOPHYSICAE, 2015, 33 (01) :101-108
[7]   Distribution of Medium-Scale Acoustic Gravity Waves in Polar Regions According to Satellite Measurement Data [J].
Fedorenko, A. K. ;
Kryuchkov, E. I. .
GEOMAGNETISM AND AERONOMY, 2011, 51 (04) :520-533
[8]   GLOBAL PROPAGATION OF ATMOSPHERIC GRAVITY-WAVES [J].
FRANCIS, SH .
JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1975, 37 (6-7) :1011-+
[9]   Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds [J].
Fritts, D. C. ;
Vadas, S. L. .
ANNALES GEOPHYSICAE, 2008, 26 (12) :3841-3861
[10]   INTERNAL ATMOSPHERIC GRAVITY WAVES AT IONOSPHERIC HEIGHTS [J].
HINES, CO .
CANADIAN JOURNAL OF PHYSICS, 1960, 38 (11) :1441-1481