Existence and multiplicity of solutions of Schrodinger-Poisson systems with radial potentials

被引:10
作者
Li, Anran [1 ]
Su, Jiabao [1 ]
Zhao, Leiga [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
关键词
POSITIVE SOLUTIONS; SOLITARY WAVES; EQUATIONS; MAXWELL; CONCAVE; STATES;
D O I
10.1017/S0308210512001382
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the nonlinear Schrodinger-Poisson system -Delta u + V(vertical bar x vertical bar)u + phi u = lambda Q(vertical bar x vertical bar)f(u) in R-3, -Delta phi = u(2) in R-3, where lambda > 0, V and Q are radial functions, which can be vanishing or coercive at infinity. With assumptions on f just in a neighbourhood of the origin, existence and multiplicity of non-trivial radial solutions are obtained via variational methods. In particular, if f is sublinear and odd near the origin, we obtain infinitely many solutions of (SP)(lambda) for any lambda > 0.
引用
收藏
页码:319 / 332
页数:14
相关论文
共 27 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[3]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[4]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[5]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[6]   Multiple critical points for a class of nonlinear functionals [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (03) :507-523
[7]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[8]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[9]   On a nonlinear elliptic eigenvalue problem [J].
Chen, SW ;
Li, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (02) :691-698
[10]  
Coclite G.M., 2003, Commun. Appl. Anal, V7, P417