Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging: an external validation study

被引:23
作者
Horvat, Natally [1 ,2 ]
Veeraraghavan, Harini [3 ]
Nahas, Caio S. R. [4 ]
Bates, David D. B. [1 ]
Ferreira, Felipe R. [2 ]
Zheng, Junting [5 ]
Capanu, Marinela [5 ]
Fuqua, James L. [1 ]
Fernandes, Maria Clara [1 ]
Sosa, Ramon E. [1 ]
Jayaprakasam, Vetri Sudar [1 ]
Cerri, Giovanni G. [2 ]
Nahas, Sergio C. [4 ]
Petkovska, Iva [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Radiol, 1275 York Ave,Box 29, New York, NY 10065 USA
[2] Univ Sao Paulo, Dept Radiol, Sao Paulo, SP, Brazil
[3] Mem Sloan Kettering Canc Ctr, Dept Med Phys, 1275 York Ave, New York, NY 10021 USA
[4] Univ Sao Paulo, Dept Surg, Sao Paulo, SP, Brazil
[5] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, 1275 York Ave, New York, NY 10021 USA
关键词
Rectal cancer; Neoadjuvant therapy; Magnetic resonance imaging; Artificial intelligence; Watchful waiting; PATHOLOGICAL COMPLETE RESPONSE; NEOADJUVANT CHEMORADIOTHERAPY; TUMORAL RESPONSE; TEXTURE ANALYSIS; MRI; RADIOMICS; CHEMORADIATION; AGREEMENT;
D O I
10.1007/s00261-022-03572-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To evaluate an MRI-based radiomic texture classifier alone and combined with radiologist qualitative assessment in predicting pathological complete response (pCR) using restaging MRI with internal training and external validation. Methods Consecutive patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant therapy followed by total mesorectal excision from March 2012 to February 2016 (Memorial Sloan Kettering Cancer Center/internal dataset, n = 114, 41% female, median age = 55) and July 2014 to October 2015 (Instituto do Cancer do Estado de Sao Paulo/external dataset, n = 50, 52% female, median age = 64.5) were retrospectively included. Two radiologists (R1, senior; R2, junior) independently evaluated restaging MRI, classifying patients (radiological complete response vs radiological partial response). Model A (n = 33 texture features), model B (n = 91 features including texture, shape, and edge features), and two combination models (model A + B + R1, model A + B + R2) were constructed. Pathology served as the reference standard for neoadjuvant treatment response. Comparison of the classifiers' AUCs on the external set was done using DeLong's test. Results Models A and B had similar discriminative ability (P = 0 .3; Model B AUC = 83%, 95% CI 70%-97%). Combined models increased inter-reader agreement compared with radiologist-only interpretation (x=0.82, 95% CI 0.70-0.89 vs k=0.25, 95% CI 0.11-0.61). The combined model slightly increased junior radiologist specificity, positive predictive value, and negative predictive values (93% vs 90%, 57% vs 50%, and 91% vs 90%, respectively). Conclusion We developed and externally validated a combined model using radiomics and radiologist qualitative assessment, which improved inter-reader agreement and slightly increased the diagnostic performance of the junior radiologist in predicting pCR after neoadjuvant treatment in patients with LARC. [GRAPHICS] .
引用
收藏
页码:2770 / 2782
页数:13
相关论文
共 43 条
[1]   Magnetic Resonance Texture Analysis in Identifying Complete Pathological Response to Neoadjuvant Treatment in Locally Advanced Rectal Cancer [J].
Aker, Medhat ;
Ganeshan, Balaji ;
Afaq, Asim ;
Wan, Simon ;
Groves, Ashley M. ;
Arulampalam, Tan .
DISEASES OF THE COLON & RECTUM, 2019, 62 (02) :163-170
[2]   MRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitors [J].
Bhatia, Ankush ;
Birger, Maxwell ;
Veeraraghavan, Harini ;
Um, Hyemin ;
Tixier, Florent ;
McKenney, Anna Sophia ;
Cugliari, Marina ;
Caviasco, Annalise ;
Bialczak, Angelica ;
Malani, Rachna ;
Flynn, Jessica ;
Zhang, Zhigang ;
Yang, T. Jonathan ;
Santomasso, Bianca D. ;
Shoushtari, Alexander N. ;
Young, Robert J. .
NEURO-ONCOLOGY, 2019, 21 (12) :1578-1586
[3]   Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Durdux, Catherine ;
Taieb, Julien ;
Berger, Anne ;
Coriat, Romain ;
Chaussade, Stanislas ;
Dousset, Bertrand ;
Nordlinger, Bernard ;
Burgun, Anita .
SCIENTIFIC REPORTS, 2018, 8
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics [J].
Bulens, Philippe ;
Couwenberg, Alice ;
Intven, Martijn ;
Debucquoy, Annelies ;
Vandecaveye, Vincent ;
Van Cutsem, Eric ;
D'Hoore, Andre ;
Wolthuis, Albert ;
Mukherjee, Pritam ;
Gevaert, Olivier ;
Haustermans, Karin .
RADIOTHERAPY AND ONCOLOGY, 2020, 142 :246-252
[6]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[7]   Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer [J].
Cui, Yanfen ;
Yang, Xiaotang ;
Shi, Zhongqiang ;
Yang, Zhao ;
Du, Xiaosong ;
Zhao, Zhikai ;
Cheng, Xintao .
EUROPEAN RADIOLOGY, 2019, 29 (03) :1211-1220
[8]   Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer [J].
Cusumano, Davide ;
Dinapoli, Nicola ;
Boldrini, Luca ;
Chiloiro, Giuditta ;
Gatta, Roberto ;
Masciocchi, Carlotta ;
Lenkowicz, Jacopo ;
Casa, Calogero ;
Damiani, Andrea ;
Azario, Luigi ;
Van Soest, Johan ;
Dekker, Andre ;
Lambin, Philippe ;
De Spirito, Marco ;
Valentini, Vincenzo .
RADIOLOGIA MEDICA, 2018, 123 (04) :286-295
[9]   Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience [J].
De Cecco, Carlo N. ;
Ciolina, Maria ;
Caruso, Damiano ;
Rengo, Marco ;
Ganeshan, Balaji ;
Meinel, Felix G. ;
Musio, Daniela ;
De Felice, Francesca ;
Tombolini, Vincenzo ;
Laghi, Andrea .
ABDOMINAL RADIOLOGY, 2016, 41 (09) :1728-1735
[10]   Texture Analysis as Imaging Biomarker of Tumoral Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients Studied with 3-T Magnetic Resonance [J].
De Cecco, Carlo N. ;
Ganeshan, Balaji ;
Ciolina, Maria ;
Rengo, Marco ;
Meinel, Felix G. ;
Musio, Daniela ;
De Felice, Francesca ;
Raffetto, Nicola ;
Tombolini, Vincenzo ;
Laghi, Andrea .
INVESTIGATIVE RADIOLOGY, 2015, 50 (04) :239-245