共 50 条
Controlled Hydrolysis of Metal-Organic Frameworks: Hierarchical Ni/Co-Layered Double Hydroxide Microspheres for High-Performance Supercapacitors
被引:344
|作者:
Xiao, Zhenyu
[1
,3
]
Mei, Yingjie
[1
]
Yuan, Shuai
[2
]
Mei, Hao
[1
]
Xu, Ben
[1
]
Bao, Yuxiang
[3
]
Fan, Lili
[1
]
Kang, Wenpei
[1
]
Dai, Fangna
[1
]
Wang, Rongmign
[1
]
Wang, Lei
[3
]
Hu, Songqing
[1
]
Sun, Daofeng
[1
]
Zhou, Hong-Cai
[2
]
机构:
[1] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Shandong, Peoples R China
[2] Texas A&M Univ, Dept Chem Mat Sci & Engn, College Stn, TX 77842 USA
[3] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Lab Inorgan Synth & Appl Chem, Key Lab Ecochem Engn,Minist Educ, Qingdao 266042, Shandong, Peoples R China
来源:
基金:
美国国家科学基金会;
关键词:
layered double hydroxide;
metal-organic framework;
supercapacitor;
hierarchical microspheres;
pseudomorphic conversion;
HOLLOW INTERIORS;
SURFACE-AREA;
MOF;
ELECTRODE;
COMPOSITE;
CONSTRUCTION;
NANOSHEETS;
ARRAYS;
ENERGY;
CARBON;
D O I:
10.1021/acsnano.9b02106
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Pseudomorphic conversion of metal-organic frameworks (MOFs) enables the fabrication of nanomaterials with well-defined porosities and morphologies for enhanced performances. However, the commonly reported calcination strategy usually requires high temperature to pyrolyze MOF particles and often results in uncontrolled growth of nanomaterials. Herein, we report the controlled alkaline hydrolysis of MOFs to produce layered double hydroxide (LDH) while maintaining the porosity and morphology of MOF particles. The preformed trinuclear M-3(mu(3)-OH) (M = Ni2+ and Co2+) clusters in MOFs were demonstrated to be critical for the pseudomorphic transformation process. An isotopic tracing experiment revealed that the O-18-labeled M-3(mu(3)-(OH)-O-18) participated in the structural assembly of LDH, which avoided the leaching of metal cations and the subsequent uncontrolled growth of hydroxides. The resulting LDHs maintain the spherical morphology of MOF templates and possess a hierarchical porous structure with high surface area (BET surface area up to 201 m(2).g(-1)), which is suitable for supercapacitor applications. As supercapacitor electrodes, the optimized LDH with the Ni:Co molar ratio of 7:3 shows a high specific capacitance (1652 F.g(-1) at 1 A.g(-1)) and decent cycling performance, retaining almost 100% after 2000 cycles. Furthermore, the hydrolysis method allows the recycling of organic ligands and large-scale synthesis of LDH materials.
引用
收藏
页码:7024 / 7030
页数:7
相关论文