Polarities, quasi-symmetric designs, and Hamada's conjecture

被引:29
作者
Jungnickel, Dieter [1 ]
Tonchev, Vladimir D. [2 ]
机构
[1] Univ Augsburg, Lehrstuhl Diskrete Math Optimierung & Operat Res, D-86135 Augsburg, Germany
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
Polarity; Projective geometry; Design; Quasi-symmetric design; Hamada's conjecture; HADAMARD DESIGNS; AFFINE DESIGNS; GOOD BLOCKS; MATRICES; NUMBER; CODES;
D O I
10.1007/s10623-008-9249-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that every polarity of PG(2k - 1,q), where ka parts per thousand yen 2, gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to, PG (k) (2k,q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada's conjecture, for any field of prime order p. Previously, only a handful of counterexamples were known.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 30 条
[11]  
Hirschfeld J.W.P., 1985, Oxford Mathematical Monographs
[12]  
Hirschfeld J.W. P., 1994, Projective geometry codes over prime fields, Finite Fields: Theory, Applications, and Algorithms, P151
[13]  
Hirschfeld J.W.P, 1998, PROJECTIVE GEOMETRIE
[14]   On an identity for Abel and on other analogous formulae. [J].
Jensen, JLWV .
ACTA MATHEMATICA, 1902, 26 (01) :307-318
[15]  
JUNGNICKEL D, 1984, GEOM DEDICATA, V16, P167
[16]  
JUNGNICKEL D, NUMBER DESIGNS UNPUB
[17]   AUTOMORPHISMS AND ISOMORPHISMS OF SYMMETRICAL AND AFFINE DESIGNS [J].
KANTOR, WM .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1994, 3 (03) :307-338
[18]   Bounds on the number of affine, symmetric, and Hadamard designs and matrices [J].
Lam, C ;
Lam, S ;
Tonchev, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (02) :186-196
[19]   A new bound on the number of designs with classical affine parameters [J].
Lam, C ;
Tonchev, VD .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 27 (1-2) :111-117
[20]  
Larsen M.E., 2007, CMS TREATISES MATH