Polarities, quasi-symmetric designs, and Hamada's conjecture

被引:29
作者
Jungnickel, Dieter [1 ]
Tonchev, Vladimir D. [2 ]
机构
[1] Univ Augsburg, Lehrstuhl Diskrete Math Optimierung & Operat Res, D-86135 Augsburg, Germany
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
Polarity; Projective geometry; Design; Quasi-symmetric design; Hamada's conjecture; HADAMARD DESIGNS; AFFINE DESIGNS; GOOD BLOCKS; MATRICES; NUMBER; CODES;
D O I
10.1007/s10623-008-9249-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that every polarity of PG(2k - 1,q), where ka parts per thousand yen 2, gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to, PG (k) (2k,q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada's conjecture, for any field of prime order p. Previously, only a handful of counterexamples were known.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 30 条
[1]  
Assmus EF, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P1269
[2]  
Assmus Jr E.F., 1992, DESIGNS THEIR CODES
[3]   A characterization of projective subspaces of codimension two as quasi-symmetric designs with good blocks [J].
Baartmans, Alphonse ;
Sane, Sharad .
DISCRETE MATHEMATICS, 2006, 306 (14) :1493-1501
[4]  
Beth T., 1999, Encyclopedia of Mathematics and Its Applications, V69
[5]  
COLBOURN CJ, 2007, HDB COMBINATORIAL DE
[6]   RANKS OF INCIDENCE MATRICES OF STEINER TRIPLE SYSTEMS [J].
DOYEN, J ;
HUBAUT, X ;
VANDENSAVEL, M .
MATHEMATISCHE ZEITSCHRIFT, 1978, 163 (03) :251-259
[7]   ON A CLASS OF MAJORITY-LOGIC DECODABLE CYCLIC CODES [J].
GOETHALS, JM ;
DELSARTE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (02) :182-+
[8]   BIB DESIGN HAVING MINIMUM P-RANK [J].
HAMADA, N ;
OHMORI, H .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (02) :131-140
[9]  
Hamada Noboru, 1973, HIROSHIMA MATH J, V3, P154
[10]   Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4 [J].
Harada, M ;
Lam, C ;
Tonchev, VD .
DESIGNS CODES AND CRYPTOGRAPHY, 2005, 34 (01) :71-87