Hodge Theory of the Middle Convolution

被引:22
作者
Dettweiler, Michael [1 ]
Sabbah, Claude [2 ]
机构
[1] Univ Bayreuth, Dept Math, Lehrstuhl Math Zahlentheorie 4, D-95440 Bayreuth, Germany
[2] Ecole Polytech, CNRS, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, France
关键词
middle convolution; rigid local system; Katz algorithm; Hodge theory; l-adic representation;
D O I
10.4171/PRIMS/119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the behaviour of Hodge data under tensor product with a unitary rank-one local system and middle convolution with a Kummer unitary rank-one local system for an irreducible variation of polarized complex Hodge structure on a punctured complex affine line.
引用
收藏
页码:761 / 800
页数:40
相关论文
共 24 条
[1]   Rigid irregular connections on P1 [J].
Arinkin, D. .
COMPOSITIO MATHEMATICA, 2010, 146 (05) :1323-1338
[2]  
Barnet-Lamb T., ASIAN MATH J
[3]  
Bloch S., 2004, Asian J. Math, V8, P587, DOI [10.4310/AJM.2004.v8.n4.a16, DOI 10.4310/AJM.2004.V8.N4.A16]
[4]  
DELIGNE P, 1986, PUBL MATH-PARIS, P5
[5]  
Deligne P., 1987, Discrete Groups in Geometry and Analysis, P1
[6]   Motivic exponential integrals and a Motivic Thom-Sebastiani theorem [J].
Denef, J ;
Loeser, F .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (02) :285-309
[7]  
Dettweiler M., 2011, ALGEBRAIC ANAL GEOME
[8]  
Dettweiler M., 2011, T AM MATH SOC
[9]   Rigid local systems and motives of type G2 [J].
Dettweiler, Michael ;
Reiter, Stefan ;
Katz, Nicholas M. .
COMPOSITIO MATHEMATICA, 2010, 146 (04) :929-963
[10]  
Faltings G., 1989, ALGEBRAIC ANAL GEOME, P25