Cyanobacterial metabolic engineering for biofuel and chemical production

被引:128
作者
Oliver, Neal J. [1 ]
Rabinovitch-Deere, Christine A. [1 ]
Carroll, Austin L. [1 ]
Nozzi, Nicole E. [1 ]
Case, Anna E. [1 ]
Atsumi, Shota [1 ]
机构
[1] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
SP PCC 6803; SYNECHOCYSTIS SP PCC6803; CARBON-DIOXIDE; PHOTOSYNTHETIC PRODUCTION; LACTIC-ACID; ISOPRENOID BIOSYNTHESIS; ISOPROPANOL PRODUCTION; ETHANOL SYNTHESIS; CAFFEIC ACID; PATHWAY;
D O I
10.1016/j.cbpa.2016.08.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rising levels of atmospheric CO2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 50 条
[21]   Metabolic flux analysis and metabolic engineering for polyhydroxybutyrate (PHB) production [J].
Subramanian, Bhargavi ;
Basak, Souvik ;
Thirumurugan, Rithanya ;
Saleena, Lilly M. .
POLYMER BULLETIN, 2024, 81 (12) :10589-10608
[22]   Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway [J].
Hirokawa, Yasutaka ;
Maki, Yuki ;
Tatsuke, Tsuneyuki ;
Hanai, Taizo .
METABOLIC ENGINEERING, 2016, 34 :97-103
[23]   Metabolic engineering of Escherichia coli for α-farnesene production [J].
Wang, Chonglong ;
Yoon, Sang-Hwal ;
Jang, Hui-Jeong ;
Chung, Young-Ryun ;
Kim, Jae-Yean ;
Choi, Eui-Sung ;
Kim, Seon-Won .
METABOLIC ENGINEERING, 2011, 13 (06) :648-655
[24]   Metabolic engineering of Yarrowia lipolytica for liquiritigenin production [J].
Akram, Muhammad ;
Rasool, Aamir ;
An, Ting ;
Feng, Xudong ;
Li, Chun .
CHEMICAL ENGINEERING SCIENCE, 2021, 230
[25]   Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution [J].
Hirokawa, Yasutaka ;
Matsuo, Shingo ;
Hamada, Hiroyuki ;
Matsuda, Fumio ;
Hanai, Taizo .
MICROBIAL CELL FACTORIES, 2017, 16
[26]   Metabolic engineering of Yarrowia lipolytica for the production of isoprene [J].
Shaikh, Kurshedaktar M. ;
Odaneth, Annamma A. .
BIOTECHNOLOGY PROGRESS, 2021, 37 (06)
[27]   Metabolic engineering of Yarrowia lipolytica for scutellarin production [J].
Wang, Yina ;
Liu, Xiaonan ;
Chen, Bihuan ;
Liu, Wei ;
Guo, Zhaokuan ;
Liu, Xiangyu ;
Zhu, Xiaoxi ;
Liu, Jiayu ;
Zhang, Jin ;
Li, Jing ;
Zhang, Lei ;
Gao, Yadi ;
Zhang, Guanghui ;
Wang, Yan ;
Choudhary, M. Iqbal ;
Yang, Shengchao ;
Jiang, Huifeng .
SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2022, 7 (03) :958-964
[28]   Metabolic engineering of Corynebacterium glutamicum for glycolate production [J].
Zahoor, Ahmed ;
Otten, Andreas ;
Wendisch, Volker F. .
JOURNAL OF BIOTECHNOLOGY, 2014, 192 :366-375
[29]   Metabolic engineering of Escherichia coli for agmatine production [J].
Xu, Daqing ;
Zhang, Lirong .
ENGINEERING IN LIFE SCIENCES, 2019, 19 (01) :13-20
[30]   Metabolic engineering of Bacillus subtilis for terpenoid production [J].
Guan, Zheng ;
Xue, Dan ;
Abdallah, Ingy I. ;
Dijkshoorn, Linda ;
Setroikromo, Rita ;
Lv, Guiyuan ;
Quax, Wim J. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (22) :9395-9406