Thermodynamic and magnetic properties of knorringite garnet (Mg3Cr2Si3O12) based on low-temperature calorimetry and magnetic susceptibility measurements

被引:11
作者
Wijbrans, C. H. [1 ]
Niehaus, O. [2 ]
Rohrbach, A. [1 ]
Poettgen, R. [2 ]
Klemme, S. [1 ]
机构
[1] Univ Munster, Inst Mineral, D-48149 Munster, Germany
[2] Univ Munster, Inst Anorgan & Analyt Chem, D-48149 Munster, Germany
关键词
Knorringite garnet; Heat capacity; Magnetic susceptibility; Low-temperature calorimetry; HEAT-CAPACITY; ADIABATIC CALORIMETRY; HIGH-PRESSURE; MANTLE; TRANSITION; PYROPE; PHASE; DATASET; MGCR2O4; SPINEL;
D O I
10.1007/s00269-013-0653-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The low-temperature heat capacity of knorringite garnet (Mg3Cr2Si3O12) was measured between 2 and 300 K, and thermochemical functions were derived from the results. The measured heat capacity curves show a sharp lambda-shaped anomaly peaking at around 5.1 K. Magnetic susceptibility data show that the transition is caused by antiferromagnetic ordering. From the C (p) data, we suggest a standard entropy (298.15 K) of 301 +/- A 2.5 J mol(-1) K-1 for Mg3Cr2Si3O12. The new data are also used in conjunction with previous experimental results to constrain a dagger H (f) A degrees for knorringite.
引用
收藏
页码:341 / 346
页数:6
相关论文
共 35 条
[1]   THE EFFECT OF PRESSURE-INDUCED SOLID-SOLID PHASE-TRANSITIONS ON DECOMPRESSION MELTING OF THE MANTLE [J].
ASIMOW, PD ;
HIRSCHMANN, MM ;
GHIORSO, MS ;
OHARA, MJ ;
STOLPER, EM .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1995, 59 (21) :4489-4506
[2]  
BOSE K, 1995, AM MINERAL, V80, P231
[3]   Mantle-derived indicator mineral compositions as applied to diamond exploration [J].
Cookenboo, H. O. ;
Gruetter, H. S. .
GEOCHEMISTRY-EXPLORATION ENVIRONMENT ANALYSIS, 2010, 10 (01) :81-95
[4]   Precision and accuracy of the heat-pulse calorimetric technique: low-temperature heat capacities of milligram-sized synthetic mineral samples [J].
Dachs, E ;
Bertoldi, C .
EUROPEAN JOURNAL OF MINERALOGY, 2005, 17 (02) :251-259
[5]   High-pressure structural studies of group-15 elements [J].
Degtyareva, O ;
McMahon, MI ;
Nelmes, RJ .
HIGH PRESSURE RESEARCH, 2004, 24 (03) :319-356
[6]   Tetragonal low-temperature phase of MgCr2O4 [J].
Ehrenberg, H ;
Knapp, M ;
Baehtz, C ;
Klemme, S .
POWDER DIFFRACTION, 2002, 17 (03) :230-233
[7]   The system MgO-Al2O3-SiO2-Cr2O3 revisited:: reanalysis of Doroshev et al.'s (1997) experiments and new experiments [J].
Girnis, AV ;
Brey, GP ;
Doroshev, AM ;
Turkin, AI ;
Simon, N .
EUROPEAN JOURNAL OF MINERALOGY, 2003, 15 (06) :953-964
[8]   A thermodynamic model for silicate melt in CaO-MgO-Al2O3-SiO2 to 50 kbar and 1800 °C [J].
Green, E. C. R. ;
Holland, T. J. B. ;
Powell, R. .
JOURNAL OF METAMORPHIC GEOLOGY, 2012, 30 (06) :579-597
[9]   LOW-TEMPERATURE HEAT-CAPACITIES OF SYNTHETIC PYROPE, GROSSULAR, AND PYROPE60GROSSULAR40 [J].
HASELTON, HT ;
WESTRUM, EF .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1980, 44 (05) :701-709
[10]   An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids [J].
Holland, T. J. B. ;
Powell, R. .
JOURNAL OF METAMORPHIC GEOLOGY, 2011, 29 (03) :333-383