An SSLE Algorithm for Inequality Constrained Optimization Without Strict Complementarity

被引:0
作者
Hu, Yunhong [1 ]
Wang, Yongli [1 ]
He, Guoping [1 ]
机构
[1] Shandong Univ Sci & Technol, Sch Informat Sci & Engn, Qingdao 266510, Peoples R China
来源
PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS | 2008年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an SSLE algorithm for solving inequality constrained optimization problems is proposed. At each iteration, the new algorithm only needs to solve one or two linear systems. Under standard assumptions, the algorithm is globally convergent. In particular, the convergence rate is proved to be superlinear without the strict complementarity assumption.
引用
收藏
页码:316 / 320
页数:5
相关论文
共 16 条
[1]  
BONNANS JF, 1995, SIAM J OPTIMIZ, V54, P796
[2]  
Chen W.-K., 1993, LINEAR NETWORKS SYST, P123
[3]   Robust recursive quadratic programming algorithm model with global and superlinear convergence properties [J].
Facchinei, F .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (03) :543-579
[4]   A simply constrained optimization reformulation of KKT systems arising from variational inequalities [J].
Facchinei, F ;
Fischer, A ;
Kanzow, C ;
Peng, JM .
APPLIED MATHEMATICS AND OPTIMIZATION, 1999, 40 (01) :19-37
[5]  
FACCHINEI F, 1995, JOTA, V85, P371
[6]  
Gao Z.Y., 1997, SCI CHINA SER A, V27, P24
[7]   Sequential systems of linear equations algorithm for nonlinear optimization problems - general constrained problems [J].
Gao, ZY ;
He, GP ;
Wu, F .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) :211-226
[8]  
GAO ZY, 1994, 9431 I APPL MATH AC
[9]   SUPERLINEARLY CONVERGENT VARIABLE METRIC ALGORITHMS FOR GENERAL NONLINEAR-PROGRAMMING PROBLEMS [J].
HAN, SP .
MATHEMATICAL PROGRAMMING, 1976, 11 (03) :263-282
[10]  
JIAN JB, 2004, ACTA MATH SINICA CHI, V4, P781