Finite-Horizon Distributed H∞ State Estimation with Stochastic Parameters and Nonlinearities through Sensor Networks

被引:0
作者
Ding Derui [1 ,3 ]
Wang Zidong [1 ,2 ]
Zhang Sunjie [1 ]
Shu Huisheng [1 ]
机构
[1] Donghua Univ, Sch Informat Sci & Technol, Shanghai 200051, Peoples R China
[2] Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
[3] Anhui Polytech Univ, Sch Sci, Wuhu 241000, Peoples R China
来源
PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE | 2012年
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Discrete time-varying systems; Distributed H-infinity state estimation; Recursive Riccati difference equations; Sensor networks; Stochastic nonlinearities; Stochastic parameters; CRITERIA; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the distributed H-infinity state estimation problem for a class of discrete time-varying nonlinear systems with both stochastic parameters and stochastic nonlinearities. The system measurements are collected through sensor networks with sensors distributed according to a given topology. The purpose of the addressed problem is to design a set of time-varying estimators such that the average estimation performance of the networked sensors is guaranteed over a given finite-horizon. Through available output measurements from not only the individual sensor but also its neighboring sensors, a necessary and sufficient condition is established to achieve the H-infinity performance constraint. The desired estimator parameters can be obtained by solving coupled backward recursive Riccati difference equations (RDEs). A numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed estimator design approach.
引用
收藏
页码:6508 / 6513
页数:6
相关论文
共 10 条
  • [1] Set-Membership Constrained Particle Filter: Distributed Adaptation for Sensor Networks
    Farahmand, Shahrokh
    Roumeliotis, Stergios I.
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4122 - 4138
  • [2] Finite Horizon H2/H∞ Control for Discrete-Time Stochastic Systems With Markovian Jumps and Multiplicative Noise
    Hou, Ting
    Zhang, Weihai
    Ma, Hongji
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (05) : 1185 - 1191
  • [3] GENERAL RESULT IN STOCHASTIC OPTIMAL CONTROL OF NONLINEAR DISCRETE-TIME SYSTEMS WITH QUADRATIC PERFORMANCE CRITERIA
    JACOBSON, DH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (01) : 153 - 161
  • [4] Fastest Distributed Consensus Problem on Fusion of Two Star Sensor Networks
    Jafarizadeh, Saber
    Jamalipour, Abbas
    [J]. IEEE SENSORS JOURNAL, 2011, 11 (10) : 2494 - 2506
  • [5] Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications
    Luo, Yingting
    Zhu, Yunmin
    Luo, Dandan
    Zhou, Jie
    Song, Enbin
    Wang, Donghua
    [J]. SENSORS, 2008, 8 (12) : 8086 - 8103
  • [6] A distributed minimum variance estimator for sensor networks
    Speranzon, A.
    Fischione, C.
    Johansson, K. H.
    Sangiovanni-Vincentelli, A.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2008, 26 (04) : 609 - 621
  • [7] Collaborative multi-target tracking in wireless sensor networks
    Teng, Jing
    Snoussi, Hichem
    Richard, Cedric
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (09) : 1427 - 1443
  • [8] Optimal consensus-based distributed estimation with intermittent communication
    Yang, Wen
    Wang, Xiaofan
    Shi, Hongbo
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (09) : 1521 - 1529
  • [9] State estimation of uncertain nonlinear stochastic systems with general criteria
    Yaz, EE
    Yaz, YI
    [J]. APPLIED MATHEMATICS LETTERS, 2001, 14 (05) : 605 - 610
  • [10] Distributed Consensus Filtering in Sensor Networks
    Yu, Wenwu
    Chen, Guanrong
    Wang, Zidong
    Yang, Wen
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (06): : 1568 - 1577