Self-Organizing Maps for imprecise data

被引:12
|
作者
D'Urso, Pierpaolo [1 ]
De Giovanni, Livia [2 ]
Massari, Riccardo [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Sociali & Econ, I-00185 Rome, Italy
[2] LUISS Guido Carli, Dipartimento Sci Polit, I-00197 Rome, Italy
关键词
Imprecise data; Fuzziness; Distance measures for imprecise data; SOMs for imprecise data; Vector quantization for imprecise data; FUZZY-SETS; CLUSTERING PROCEDURES; SIMILARITY MEASURES; DISTANCES; NUMBERS;
D O I
10.1016/j.fss.2013.09.011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Self-Organizing Maps (SOMs) consist of a set of neurons arranged in such a way that there are neighbourhood relationships among neurons. Following an unsupervised learning procedure, the input space is divided into regions with common nearest neuron (vector quantization), allowing clustering of the input vectors. In this paper, we propose an extension of the SOMs for data imprecisely observed (Self-Organizing Maps for imprecise data, SOMs-ID). The learning algorithm is based on two distances for imprecise data. In order to illustrate the main features and to compare the performances of the proposed method, we provide a simulation study and different substantive applications. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 89
页数:27
相关论文
共 50 条
  • [31] Self-organizing maps and SVD
    Dvorsky, Jiri
    DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 143 - 147
  • [32] Extensions of self-organizing maps
    Trutschl, M
    Cvek, U
    ISIS International Symposium on Interdisciplinary Science, 2005, 755 : 204 - 214
  • [33] Self-organizing visual maps
    Sim, R
    Dudek, G
    PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, : 470 - 475
  • [34] SORTING WITH SELF-ORGANIZING MAPS
    BUDINICH, M
    NEURAL COMPUTATION, 1995, 7 (06) : 1188 - 1190
  • [35] Asynchronous self-organizing maps
    Benson, MW
    Hu, J
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (06): : 1315 - 1322
  • [36] Self-organizing maps for imputation of missing data in incomplete data matrices
    Folguera, Laura
    Zupan, Jure
    Cicerone, Daniel
    Magallanes, Jorge F.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 143 : 146 - 151
  • [37] Explicit magnification control of self-organizing maps for "forbidden" data
    Merenyi, Erzsebet
    Jain, Abha
    Villmann, Thomas
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (03): : 786 - 797
  • [38] Learning Nonsparse Kernels by Self-Organizing Maps for Structured Data
    Aiolli, Fabio
    Da San Martino, Giovanni
    Hagenbuchner, Markus
    Sperduti, Alessandro
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (12): : 1938 - 1949
  • [39] Visual, Linguistic Data Mining Using Self-Organizing Maps
    Wijayasekara, Dumidu
    Manic, Milos
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [40] Data fusion using a hierarchy of self-organizing feature maps
    Knopf, GK
    SENSORS AND CONTROLS FOR INTELLIGENT MACHINING, AGILE MANUFACTURING, AND MECHATRONICS, 1998, 3518 : 6 - 16