Hsp90 Breaks the Deadlock of the Hsp70 Chaperone System

被引:117
作者
Luengo, Tania Moran [1 ,2 ]
Kityk, Roman [3 ]
Mayer, Matthias P. [3 ]
Rudiger, Stefan G. D. [1 ,2 ]
机构
[1] Univ Utrecht, Bijvoet Ctr Biomol Res, Cellular Prot Chem, Padualaan 8, NL-3584 CH Utrecht, Netherlands
[2] Univ Utrecht, Sci Life, Padualaan 8, NL-3584 CH Utrecht, Netherlands
[3] Heidelberg Univ ZMBH, Ctr Mol Biol, DKFZ ZMBH Alliance, Neuenheimer Feld 282, D-69120 Heidelberg, Germany
基金
欧盟第七框架计划;
关键词
HEAT-SHOCK-PROTEIN; CONFORMATIONAL DYNAMICS; ESCHERICHIA-COLI; STRUCTURAL-CHARACTERIZATION; PROGESTERONE-RECEPTOR; SUBSTRATE TRANSFER; DNAK; REVEALS; BINDING; MECHANISM;
D O I
10.1016/j.molcel.2018.03.028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein folding in the cell requires ATP-driven chaperone machines such as the conserved Hsp70 and Hsp90. It is enigmatic how these machines fold proteins. Here, we show that Hsp90 takes a key role in protein folding by breaking an Hsp70-inflicted folding block, empowering protein clients to fold on their own. At physiological concentrations, Hsp70 stalls productive folding by binding hydrophobic, core-forming segments. Hsp90 breaks this deadlock and restarts folding. Remarkably, neither Hsp70 nor Hsp90 alters the folding rate despite ensuring high folding yields. In fact, ATP-dependent chaperoning is restricted to the early folding phase. Thus, the Hsp70-Hsp90 cascade does not fold proteins, but instead prepares them for spontaneous, productive folding. This stopstart mechanism is conserved from bacteria to man, assigning also a general function to bacterial Hsp90, HtpG. We speculate that the decreasing hydrophobicity along the Hsp70-Hsp90 cascade may be crucial for enabling spontaneous folding.
引用
收藏
页码:545 / +
页数:17
相关论文
共 66 条
[41]   Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery [J].
Pratt, WB ;
Toft, DO .
EXPERIMENTAL BIOLOGY AND MEDICINE, 2003, 228 (02) :111-133
[42]   Steroid receptor interactions with heat shock protein and immunophilin chaperones [J].
Pratt, WB ;
Toft, DO .
ENDOCRINE REVIEWS, 1997, 18 (03) :306-360
[43]   AMPylation targets the rate-limiting step of BiP's ATPase cycle for its functional inactivation [J].
Preissler, Steffen ;
Rohlandt, Lukas ;
Yan, Yahui ;
Chen, Ruming ;
Read, Randy J. ;
Ron, David .
ELIFE, 2017, 6
[44]   Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone [J].
Prodromou, C ;
Roe, SM ;
OBrien, R ;
Ladbury, JE ;
Piper, PW ;
Pearl, LH .
CELL, 1997, 90 (01) :65-75
[45]   Picky Hsp90-Every Game with Another Mate [J].
Radli, Martina ;
Rudiger, Stefan G. D. .
MOLECULAR CELL, 2017, 67 (06) :899-900
[46]   Metazoan Hsp70 machines use Hsp110 to power protein disaggregation [J].
Rampelt, Heike ;
Kirstein-Miles, Janine ;
Nillegoda, Nadinath B. ;
Chi, Kang ;
Scholz, Sebastian R. ;
Morimoto, Richard I. ;
Bukau, Bernd .
EMBO JOURNAL, 2012, 31 (21) :4221-4235
[47]   Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles [J].
Rosenzweig, Rina ;
Sekhar, Ashok ;
Nagesh, Jayashree ;
Kay, Lewis E. .
ELIFE, 2017, 6
[48]   Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries [J].
Rudiger, S ;
Germeroth, L ;
SchneiderMergener, J ;
Bukau, B .
EMBO JOURNAL, 1997, 16 (07) :1501-1507
[49]   The Plasticity of the Hsp90 Co-chaperone System [J].
Sahasrabudhe, Priyanka ;
Rohrberg, Julia ;
Biebl, Maximillian M. ;
Rutz, Daniel A. ;
Buchner, Johannes .
MOLECULAR CELL, 2017, 67 (06) :947-+
[50]  
SANCHEZ ER, 1987, J BIOL CHEM, V262, P6986