Atomistic simulations of metallic microstructures

被引:59
作者
Farkas, Diana [1 ]
机构
[1] Virginia Tech, Dept Mat Sci & Engn, 201A Holden Hall,445 Old Turner St, Blacksburg, VA 24061 USA
关键词
Grain boundaries; Dislocations; Deformation; Fracture; Molecular dynamics; TILT GRAIN-BOUNDARIES; MOLECULAR-DYNAMICS SIMULATIONS; TENSION-COMPRESSION ASYMMETRY; IN-SITU TEM; DISLOCATION NUCLEATION; NANOCRYSTALLINE METALS; SYMMETRIC TILT; THIN-FILMS; DEFORMATION MECHANISMS; COUPLED MOTION;
D O I
10.1016/j.cossms.2013.11.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reviews recent results in the simulation of the mechanical response of metallic microstructures at the atomic level. The role of the grain boundary network in deformation process is the concentration of this paper as studied by virtual tensile and nanoindentation tests. The grain boundary network is found to contribute to plastic deformation through the process of dislocation nucleation, absorption and transmission, as well as grain boundary accommodation mechanisms such as grain boundary sliding and migration. The microstructural grain boundary network is also critical to the nucleation and propagation of cracks. The challenges and opportunities in this area are discussed. (C) 2013 Published by Elsevier Ltd.
引用
收藏
页码:284 / 297
页数:14
相关论文
共 112 条
[1]   Simulating materials failure by using up to one billion atoms and the world's fastest computer: Work-hardening [J].
Abraham, FF ;
Walkup, R ;
Gao, HJ ;
Duchaineau, M ;
De la Rubia, TD ;
Seager, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5783-5787
[2]   Exploring grain boundary energy landscapes with the activation-relaxation technique [J].
Alexander, Kathleen C. ;
Schuh, Christopher A. .
SCRIPTA MATERIALIA, 2013, 68 (12) :937-940
[3]  
[Anonymous], 2010, MODEL SIMUL MATER SC
[4]   Extended timescale atomistic modeling of crack tip behavior in aluminum [J].
Baker, K. L. ;
Warner, D. H. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (06)
[5]   The stress-strain response of nanocrystalline metals: A statistical analysis of atomistic simulations [J].
Bitzek, E. ;
Derlet, P. M. ;
Anderson, P. M. ;
Van Swygenhoven, H. .
ACTA MATERIALIA, 2008, 56 (17) :4846-4857
[6]   Strain rates in molecular dynamics simulations of nanocrystalline metals [J].
Brandl, Christian ;
Derlet, Peter M. ;
Van Swygenhoven, Helena .
PHILOSOPHICAL MAGAZINE, 2009, 89 (34-36) :3465-3475
[7]   Grain coarsening during compression of bulk nanocrystalline nickel and copper [J].
Brandstetter, S. ;
Zhang, Kai ;
Escuadro, A. ;
Weertman, J. R. ;
Van Swygenhoven, H. .
SCRIPTA MATERIALIA, 2008, 58 (01) :61-64
[8]   Fivefold twin formation during annealing of nanocrystalline Cu [J].
Bringa, E. M. ;
Farkas, Diana ;
Caro, A. ;
Wang, Y. M. ;
McNaney, J. ;
Smith, R. .
SCRIPTA MATERIALIA, 2008, 59 (12) :1267-1270
[9]   Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh [J].
Brown, W. Michael ;
Kohlmeyer, Axel ;
Plimpton, Steven J. ;
Tharrington, Arnold N. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (03) :449-459
[10]   Implementing molecular dynamics on hybrid high performance computers - short range forces [J].
Brown, W. Michael ;
Wang, Peng ;
Plimpton, Steven J. ;
Tharrington, Arnold N. .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (04) :898-911