High Glucose Represses β-Klotho Expression and Impairs Fibroblast Growth Factor 21 Action in Mouse Pancreatic Islets Involvement of Peroxisome Proliferator-Activated Receptor γ Signaling

被引:85
|
作者
So, Wing Yan [1 ]
Cheng, Qianni [1 ]
Chen, Lihua [1 ]
Evans-Molina, Carmella [2 ]
Xu, Aimin [3 ]
Lam, Karen S. L. [3 ]
Leung, Po Sing [1 ]
机构
[1] Chinese Univ Hong Kong, Fac Med, Sch Biomed Sci, Hong Kong, Hong Kong, Peoples R China
[2] Indiana Univ Sch Med, Dept Med, Indianapolis, IN 46202 USA
[3] Univ Hong Kong, Li Ka Shing Fac Med, Dept Med, Hong Kong, Hong Kong, Peoples R China
关键词
TYPE-2; DIABETES-MELLITUS; CELL FUNCTION; PPAR-GAMMA; INSULIN SENSITIVITY; RESPONSE ELEMENT; OBESITY; ADIPOCYTES; METABOLISM; RESISTANCE; TOLERANCE;
D O I
10.2337/db13-0645
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Circulating fibroblast growth factor 21 (FGF21) levels are elevated in diabetic subjects and correlate directly with abnormal glucose metabolism, while pharmacologically administered FGF21 can ameliorate hyperglycemia. The pancreatic islet is an FGF21 target, yet the actions of FGF21 in the islet under normal and diabetic conditions are not fully understood. This study investigated the effects of high glucose on islet FGF21 actions in a diabetic mouse model by investigating db/db mouse islet responses to exogenous FGF21, the direct effects of glucose on FGF21 signaling, and the involvement of peroxisome proliferator-activated receptor (PPAR) in FGF21 pathway activation. Results showed that both adult db/db mouse islets and normal islets treated with high glucose ex vivo displayed reduced -klotho expression, resistance to FGF21, and decreased PPAR expression. Rosiglitazone, an antidiabetic PPAR ligand, ameliorated these effects. Our data indicate that hyperglycemia in type 2 diabetes mellitus may lead to FGF21 resistance in pancreatic islets, probably through reduction of PPAR expression, which provides a novel mechanism for glucose-mediated islet dysfunction.
引用
收藏
页码:3751 / 3759
页数:9
相关论文
共 50 条
  • [31] Fibroblast growth factor 21 increases hepatic oxidative capacity but not physical activity or energy expenditure in hepatic peroxisome proliferator-activated receptor coactivator-1-deficient mice
    Fletcher, Justin A.
    Linden, Melissa A.
    Sheldon, Ryan D.
    Meers, Grace M.
    Morris, E. Matthew
    Butterfield, Anthony
    Perfield, James W.
    Rector, R. Scott
    Thyfault, John P.
    EXPERIMENTAL PHYSIOLOGY, 2018, 103 (03) : 408 - 418
  • [32] Ligands of peroxisome proliferator-activated receptor γ inhibit lung cancer cell growth and induce apoptosis by stimulation of P21 expression
    Han, SW
    Sidell, N
    Fisher, PB
    Roman, J
    CHEST, 2004, 125 (05) : 134S - 134S
  • [33] DISRUPTION OF TRANSFORMING GROWTH FACTORβ(TGFβ) SIGNALING BLOCKS PRESSURE OVERLOAD-INDUCED DOWNREGULATION OF ENDOGEMOUS PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORγ(PPARγ) EXPRESSION IN HEART
    Gong, K.
    Li, P.
    Lucas, J.
    Xing, D.
    Aksut, B.
    Hage, F.
    Yang, Q.
    Nozell, S.
    Oparil, S.
    Chen, Y.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2010, 58 (02) : 433 - 433
  • [34] Developmental and tissue-specific involvement of peroxisome proliferator-activated receptor-α in the control of mouse uncoupling protein-3 gene expression
    Pedraza, Neus
    Rosell, Meritxell
    Villarroya, Joan
    Iglesias, Roser
    Gonzalez, Frank J.
    Solanes, Gemma
    Villarroya, Francesc
    ENDOCRINOLOGY, 2006, 147 (10) : 4695 - 4704
  • [35] Opposing Roles of Peroxisome Proliferator-activated Receptor α and Growth Hormone in the Regulation of CYP4A11 Expression in a Transgenic Mouse Model
    Savas, Uezen
    Machemer, Daniel E. W.
    Hsu, Mei-Hui
    Gaynor, Pryce
    Lasker, Jerome M.
    Tukey, Robert H.
    Johnson, Eric F.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (24) : 16541 - 16552
  • [36] Effects of Cariprazine, Aripiprazole, and Olanzapine on Mouse Fibroblast Culture: Changes in Adiponectin Contents in Supernatants, Triglyceride Accumulation, and Peroxisome Proliferator-Activated Receptor-γ Expression
    Baba, Laszlo-Istvan
    Kolcsar, Melinda
    Kun, Imre Zoltan
    Ulakcsai, ZsOfia
    Bagamery, Fruzsina
    Szoko, Eva
    Tabi, Tamas
    Gall, Zsolt
    MEDICINA-LITHUANIA, 2019, 55 (05):
  • [37] Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-γ
    Ghosh, Asish K.
    Wei, Jun
    Wu, Minghua
    Varga, John
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 374 (02) : 231 - 236
  • [38] Selective modification of pyruvate dehydrogenase kinase isoform expression in rat pancreatic islets elicited by starvation and activation of peroxisome proliferator-activated receptor-α -: Implications for glucose-stimulated insulin secretion
    Sugden, MC
    Bulmer, K
    Augustine, D
    Holness, MJ
    DIABETES, 2001, 50 (12) : 2729 - 2736
  • [39] Regulation of prostate cancer cell growth and PSA expression by angiotensin II receptor blocker with peroxisome proliferator-activated receptor gamma ligand like action
    Ishiguro, Hitoshi
    Ishiguro, Yukari
    Kubota, Yoshinobu
    Uemura, Hiroji
    PROSTATE, 2007, 67 (09): : 924 - 932
  • [40] The effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist on the expression of transforming growth factor (TGF)-β1 and fibronectin in diabetic nephropathy.
    Yoon, SY
    Xu, ZG
    Ryu, DR
    Cha, BS
    Kang, SW
    Choi, KH
    Lee, HY
    Han, DS
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 : 392A - 393A