Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells

被引:89
作者
Aires, Antonio [1 ,2 ]
Ocampo, Sandra M. [1 ]
Simoes, Bruno M. [3 ]
Josefa Rodriguez, Maria [1 ,4 ]
Cadenas, Jael F. [1 ]
Couleaud, Pierre [1 ,2 ]
Spence, Katherine [3 ]
Latorre, Alfonso [1 ,2 ]
Miranda, Rodolfo [1 ]
Somoza, Alvaro [1 ,2 ]
Clarke, Robert B. [3 ]
Carrascosa, Jose L. [1 ,4 ]
Cortajarena, Aitziber L. [1 ,2 ]
机构
[1] Inst Madrileno Estudios Avanzados Nanociencia IMD, Campus Cantoblanco, Madrid 28049, Spain
[2] CNB CSIC IMDEA Nanociencia Associated Unit, Madrid, Spain
[3] Univ Manchester, Inst Canc Sci, Breakthrough Breast Canc Res Unit, Breast Biol, Paterson Bldg,Wilmslow Rd, Wilmslow M20 4BX, Cheshire, England
[4] CSIC, Ctr Nacl Biotecnol, Dept Struct Macromol, Madrid, Spain
基金
欧盟第七框架计划;
关键词
magnetic nanoparticles; active targeting; controlled drug release; cancer; nanomedicine; multifunctionalization; nanocarriers; CD44; IDENTIFICATION; NANOCARRIERS; EXPRESSION; PROTEIN;
D O I
10.1088/0957-4484/27/6/065103
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully. apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Prospective identification of tumorigenic breast cancer cells [J].
Al-Hajj, M ;
Wicha, MS ;
Benito-Hernandez, A ;
Morrison, SJ ;
Clarke, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3983-3988
[2]   Multifunctional roles of urokinase plasminogen activator (uPA) in cancer stemness and chemoresistance of pancreatic cancer [J].
Asuthkar, Swapna ;
Stepanova, Victoria ;
Lebedeva, Tatiana ;
Holterman, AiXuan L. ;
Estes, Norman ;
Cines, Douglas B. ;
Rao, Jasti S. ;
Gondi, Christopher S. .
MOLECULAR BIOLOGY OF THE CELL, 2013, 24 (17) :2620-2632
[3]   Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay [J].
Baccelli, Irene ;
Schneeweiss, Andreas ;
Riethdorf, Sabine ;
Stenzinger, Albrecht ;
Schillert, Anja ;
Vogel, Vanessa ;
Klein, Corinna ;
Saini, Massimo ;
Baeuerle, Tobias ;
Wallwiener, Markus ;
Holland-Letz, Tim ;
Hoefner, Thomas ;
Sprick, Martin ;
Scharpff, Martina ;
Marme, Frederik ;
Sinn, Hans Peter ;
Pantel, Klaus ;
Weichert, Wilko ;
Trumpp, Andreas .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :539-U143
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]  
Cardoso MM, 2012, CURR MED CHEM, V19, P3103
[6]   Therapeutic nanoparticles for drug delivery in cancer [J].
Cho, Kwangjae ;
Wang, Xu ;
Nie, Shuming ;
Chen, Zhuo ;
Shin, Dong M. .
CLINICAL CANCER RESEARCH, 2008, 14 (05) :1310-1316
[7]  
Cortajarena Aitziber L, 2014, Nanobiomedicine (Rij), V1, P2, DOI 10.5772/58841
[8]   Nanoparticles in drug delivery: Past, present and future [J].
Couvreur, P. .
ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (01) :21-23
[9]  
Creighton T.E., 1989, Protein Structure - A Practical Approach, P155
[10]   State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines [J].
Dawidczyk, Charlene M. ;
Kim, Chloe ;
Park, Jea Ho ;
Russell, Luisa M. ;
Lee, Kwan Hyi ;
Pomper, Martin G. ;
Searson, Peter C. .
JOURNAL OF CONTROLLED RELEASE, 2014, 187 :133-144