Peptide and peptide-based inhibitors of SARS-CoV-2 entry

被引:0
作者
Schuetz, Desiree [1 ]
Ruiz-Blanco, Yasser B. [2 ]
Muench, Jan [1 ]
Kirchhoff, Frank [1 ]
Sanchez-Garcia, Elsa [2 ]
Mueller, Janis A. [1 ]
机构
[1] Ulm Univ, Med Ctr, Inst Mol Virol, Meyerhofstr 1, D-89081 Ulm, Germany
[2] Univ Duisburg Essen, Ctr Med Biotechnol, Computat Biochem, D-45117 Essen, Germany
关键词
Peptide drug; COVID-19; Coronavirus; Fusion; Antiviral; CORONAVIRUS SPIKE PROTEIN; IMMUNODEFICIENCY-VIRUS TYPE-1; HEPTAD REPEAT REGIONS; SARS-COV ENTRY; POTENT INHIBITORS; FUSION PROTEIN; CATHEPSIN-L; WEB SERVER; HEPATITIS-B; EBOLA-VIRUS;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
To date, no effective vaccines or therapies are available against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pandemic agent of the coronavirus disease 2019 (COVID-19). Due to their safety, efficacy and specificity, peptide inhibitors hold great promise for the treatment of newly emerging viral pathogens. Based on the known structures of viral proteins and their cellular targets, antiviral peptides can be rationally designed and optimized. The resulting peptides may be highly specific for their respective targets and particular viral pathogens or exert broad antiviral activity. Here, we summarize the current status of peptides inhibiting SARS-CoV-2 entry and outline the strategies used to design peptides targeting the ACE2 receptor or the viral spike protein and its activating proteases furin, transmembrane serine protease 2 (TMPRSS2), or cathepsin L. In addition, we present approaches used against related viruses such as SARS-CoV-1 that might be implemented for inhibition of SARS-CoV-2 infection. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:47 / 65
页数:19
相关论文
共 207 条
  • [1] Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
    Abraham, Mark James
    Murtola, Teemu
    Schulz, Roland
    Páll, Szilárd
    Smith, Jeremy C.
    Hess, Berk
    Lindah, Erik
    [J]. SoftwareX, 2015, 1-2 : 19 - 25
  • [2] Agrawal U., 2020, MED J ARMED FORCES I, DOI [10.1016/j.mjafi.2020.08.004., DOI 10.1016/J.MJAFI.2020.08.004.]
  • [3] Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms
    Ali, Amanat
    Vijayan, Ranjit
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [4] Immunosilencing peptides by stereochemical inversion and sequence reversal: ⁢retro⁢-D-peptides
    Arranz-Gibert, Pol
    Ciudad, Sonia
    Seco, Jesus
    Garcia, Jesus
    Giralt, Ernest
    Teixido, Meritxell
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [5] Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development
    Arshadi, Arash Keshavarzi
    Webb, Julia
    Salem, Milad
    Cruz, Emmanuel
    Calad-Thomson, Stacie
    Ghadirian, Niloofar
    Collins, Jennifer
    Diez-Cecilia, Elena
    Kelly, Brendan
    Goodarzi, Hani
    Yuan, Jiann Shiun
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
  • [6] Azouz Nurit P, 2020, bioRxiv, DOI 10.1101/2020.05.04.077826
  • [7] Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor
    Babcock, GJ
    Esshaki, DJ
    Thomas, WD
    Ambrosino, DM
    [J]. JOURNAL OF VIROLOGY, 2004, 78 (09) : 4552 - 4560
  • [8] Identification of a Potential Peptide Inhibitor of SARS-CoV-2 Targeting its Entry into the Host Cells
    Baig, Mirza S.
    Alagumuthu, Manikandan
    Rajpoot, Sajjan
    Saqib, Uzma
    [J]. DRUGS IN R&D, 2020, 20 (03) : 161 - 169
  • [9] Barh Debmalya, 2020, F1000Res, V9, P576, DOI 10.12688/f1000research.24074.1
  • [10] Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent
    Basit, Abdul
    Ali, Tanveer
    Rehman, Shafiq Ur
    [J]. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (10) : 3605 - 3614