Numerical solutions of time fractional Burgers' equation involving Atangana-Baleanu derivative via cubic B-spline functions

被引:35
作者
Shafiq, Madiha [1 ]
Abbas, Muhammad [1 ]
Abdullah, Farah Aini [2 ]
Majeed, Abdul [3 ]
Abdeljawad, Thabet [4 ,5 ]
Alqudah, Manar A. [6 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[2] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[3] Univ Educ, Dept Math, Div Sci & Technol, Lahore 54770, Pakistan
[4] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[5] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[6] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
Burgers' equation; Atangana-Baleanu fractional derivative; Spline interpolation; Cubic B-spline functions; Finite difference technique; Stability; Convergence; DIFFERENTIAL QUADRATURE METHOD; COLLOCATION METHOD; KERNEL;
D O I
10.1016/j.rinp.2022.105244
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current paper uses the cubic B-spline functions and -weighted scheme to achieve numerical solutions of the time fractional Burgers' equation with Atangana-Baleanu derivative. A non-singular kernel is involved in the Atangana-Baleanu fractional derivative. For discretization along temporal and spatial grids, the proposed numerical technique employs the finite difference approach and cubic B-spline functions, respectively. This scheme is unconditionally stable and second order convergent in spatial and temporal directions. The presented approach is endorsed by some numerical examples, which show that it is applicable and accurate.
引用
收藏
页数:16
相关论文
共 44 条
[11]   Parametric spline functions for the solution of the one time fractional Burgers' equation [J].
El-Danaf, Talaat S. ;
Hadhoud, Adel R. .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) :4557-4564
[12]   Numerical solution of time fractional Burgers equation [J].
Esen, A. ;
Tasbozan, O. .
ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2015, 7 (02) :167-185
[13]   Numerical Solution of Time Fractional Burgers Equation by Cubic B-spline Finite Elements [J].
Esen, Alaattin ;
Tasbozan, Orkun .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) :1325-1337
[14]   New numerical simulations for some real world problems with Atangana-Baleanu fractional derivative [J].
Gao, Wei ;
Ghanbari, Behzad ;
Baskonus, Haci Mehmet .
CHAOS SOLITONS & FRACTALS, 2019, 128 :34-43
[15]   An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model [J].
Ghanbari, Behzad ;
Gunerhan, Hatira ;
Srivastava, H. M. .
CHAOS SOLITONS & FRACTALS, 2020, 138
[16]   A peculiar application of Atangana-Baleanu fractional derivative in neuroscience: Chaotic burst dynamics [J].
Goufo, Emile F. Doungmo ;
Mbehou, Mohamed ;
Pene, Morgan M. Kamga .
CHAOS SOLITONS & FRACTALS, 2018, 115 :170-176
[17]   Application of the Caputo-Fabrizio Fractional Derivative without Singular Kernel to Korteweg-de Vries-Bergers Equation [J].
Goufo, Emile Franc Doungmo .
MATHEMATICAL MODELLING AND ANALYSIS, 2016, 21 (02) :188-198
[18]  
Hall C., 1968, J. Approximation Theory, V1, P209, DOI DOI 10.1016/0021-9045(68)90025-7
[19]   Heat and Mass Transfer of Natural Convective Flow with Slanted Magnetic Field via Fractional Operators [J].
Iftikhar, Nazish ;
Baleanu, Dumitru ;
Riaz, Muhammad Bilal ;
Husnine, Syed Muhammad .
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (01) :189-212
[20]   The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method [J].
Inc, Mustafa .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :476-484