Numerical solutions of time fractional Burgers' equation involving Atangana-Baleanu derivative via cubic B-spline functions

被引:35
作者
Shafiq, Madiha [1 ]
Abbas, Muhammad [1 ]
Abdullah, Farah Aini [2 ]
Majeed, Abdul [3 ]
Abdeljawad, Thabet [4 ,5 ]
Alqudah, Manar A. [6 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[2] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[3] Univ Educ, Dept Math, Div Sci & Technol, Lahore 54770, Pakistan
[4] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[5] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[6] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
Burgers' equation; Atangana-Baleanu fractional derivative; Spline interpolation; Cubic B-spline functions; Finite difference technique; Stability; Convergence; DIFFERENTIAL QUADRATURE METHOD; COLLOCATION METHOD; KERNEL;
D O I
10.1016/j.rinp.2022.105244
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current paper uses the cubic B-spline functions and -weighted scheme to achieve numerical solutions of the time fractional Burgers' equation with Atangana-Baleanu derivative. A non-singular kernel is involved in the Atangana-Baleanu fractional derivative. For discretization along temporal and spatial grids, the proposed numerical technique employs the finite difference approach and cubic B-spline functions, respectively. This scheme is unconditionally stable and second order convergent in spatial and temporal directions. The presented approach is endorsed by some numerical examples, which show that it is applicable and accurate.
引用
收藏
页数:16
相关论文
共 44 条
[1]   Application of Atangana-Baleanu Fractional Derivative to Carbon Nanotubes Based Non-Newtonian Nanofluid: Applications in Nanotechnology [J].
Abro, Kashif Ali ;
Laghari, Muzaffar Hussain ;
Gomez-Aguilar, J. F. .
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 :1260-1269
[2]   Analysis of the fractional tumour-immune-vitamins model with Mittag-Leffler kernel [J].
Ahmad, Shabir ;
Ullah, Aman ;
Akgul, Ali ;
Baleanu, Dumitru .
RESULTS IN PHYSICS, 2020, 19
[3]   A novel method for a fractional derivative with non-local and non-singular kernel [J].
Akgul, Ali .
CHAOS SOLITONS & FRACTALS, 2018, 114 :478-482
[4]   An efficient numerical technique for solving time fractional Burgers equation [J].
Akram, Tayyaba ;
Abbas, Muhammad ;
Riaz, Muhammad Bilal ;
Ismail, Ahmad Izani ;
Ali, Norhashidah Mohd .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) :2201-2220
[5]   Redefined Extended Cubic B-Spline Functions for Numerical Solution of Time-Fractional Telegraph Equation [J].
Amin, Muhammad ;
Abbas, Muhammad ;
Baleanu, Dumitru ;
Iqbal, Muhammad Kashif ;
Riaz, Muhammad Bilal .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (01) :361-384
[6]   New concept in calculus: Piecewise differential and integral operators [J].
Atangana, Abdon ;
Araz, Seda Igret .
CHAOS SOLITONS & FRACTALS, 2021, 145 (145)
[7]   Analysis of fractal fractional differential equations [J].
Atangana, Abdon ;
Akgul, Ali ;
Owolabi, Kolade M. .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) :1117-1134
[8]   A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative [J].
Baleanu, Dumitru ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[9]  
de Boor C., 1968, J. Approximation Theory, V1, P452, DOI [DOI 10.1016/0021-9045(68)90033-6, 10.1016/0021-9045(68)90033-6]
[10]   Optimal Perturbation Iteration Method for Solving Fractional Model of Damped Burgers' Equation [J].
Deniz, Sinan ;
Konuralp, Ali ;
De la Sen, Mnauel .
SYMMETRY-BASEL, 2020, 12 (06)