Impulse response analysis of coherent waveguide communication

被引:1
作者
Kim, Yanghyo [1 ,2 ]
Tang, Adrian [1 ,2 ]
Cong, Jason [3 ,4 ,5 ,6 ]
Chang, Mau-Chung Frank [2 ,7 ]
Itoh, Tatsuo [2 ,7 ,8 ]
机构
[1] Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Comp Sci Dept, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Elect Engn Dept, Los Angeles, CA 90024 USA
[5] Univ Calif Los Angeles, CDSC, Los Angeles, CA USA
[6] Univ Calif Los Angeles, VLSI Architecture Synth & Technol VAST Lab, Los Angeles, CA USA
[7] Univ Calif Los Angeles, Elect Engn, Los Angeles, CA USA
[8] Univ Calif Los Angeles, Microwave & Millimeter Wave Elect, Los Angeles, CA USA
关键词
EM field theory and numerical techniques; RF-INTERCONNECT; EQUALIZATION;
D O I
10.1017/S1759078717001210
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An impulse response method is carried out to analyze waveguide's information capacity within a coherent communication system. Such capability is typically estimated according to group delay variations (seconds/bandwidth/distance) after carrier-modulated data undergoes a dispersive medium. However, traditional group delay methods often ignore non-linear effects by assuming input data stream only occupies narrow bandwidth such that a propagation constant can be linearized centered at the carrier frequency. Such a constraint can be lifted with a proposed baseband equivalent impulse response method by using frequency domain convolution and multiplication. Once the impulse response in frequency domain is secured, its time domain counterpart can be calculated based on inverse Fourier transformation. Such analysis can fully reveal data pulse's broadening and gauge its inter-symbol interference by simply convolving input data with extracted impulse response, not limited to specific frequency range or type of waveguide.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 25 条
[1]   PRECISION DIELECTRIC MEASUREMENTS OF NONPOLAR POLYMERS IN THE MILLIMETER WAVELENGTH RANGE [J].
AFSAR, MN .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1985, 33 (12) :1410-1415
[2]   Equalization and FEC techniques for optical transceivers [J].
Azadet, K ;
Haratsch, EF ;
Kim, H ;
Saibi, F ;
Saunders, JH ;
Shaffer, M ;
Song, L ;
Yu, ML .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2002, 37 (03) :317-327
[3]  
Chatterjee M. R., 1990, Proceedings of the 1990 IEEE Southern Tier Technical Conference (Cat. No.90TH0313-7), P209, DOI 10.1109/STIER.1990.324647
[4]  
Cho W., 2016, IEEE INT SOL STAT CI
[5]  
Cho WH, 2015, IEEE CUST INTEGR CIR
[6]  
Collins R.E., 1990, FIELD THEORY GUIDED
[7]   OPTICAL-FIBER IMPULSE-RESPONSE MEASUREMENT SYSTEM [J].
DANNWOLF, JW ;
GOTTFRIED, S ;
SARGENT, GA ;
STRUM, RC .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1976, 25 (04) :401-406
[8]   A 16-Gb/s 14.7-mW Tri-Band Cognitive Serial Link Transmitter With Forwarded Clock to Enable PAM-16/256-QAM and Channel Response Detection [J].
Du, Yuan ;
Cho, Wei-Han ;
Huang, Po-Tsang ;
Li, Yilei ;
Wong, Chien-Heng ;
Du, Jieqiong ;
Kim, Yanghyo ;
Hu, Boyu ;
Du, Li ;
Liu, Chunchen ;
Lee, Sheau Jiung ;
Chang, Mau-Chung Frank .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (04) :1111-1122
[9]   IMPULSE RESPONSE OF CLAD OPTICAL MULTIMODE FIBERS [J].
GLOGE, D .
BELL SYSTEM TECHNICAL JOURNAL, 1973, 52 (06) :801-816
[10]   Equalization and clock and data recovery techniques for 10-gb/s CMOS serial-link receivers [J].
Gondi, Srikanth ;
Razavi, Behzad .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (09) :1999-2011