When the annihilator graph of a commutative ring is planar or toroidal?

被引:0
作者
Bakhtyiari, M. [1 ]
Nikandish, R. [2 ]
Nikmehr, M. J. [1 ]
机构
[1] KN Toosi Univ Technol, Fac Math, POB 16315-1618, Tehran, Iran
[2] Jundi Shapur Univ Technol, Dept Math, POB 64615-334, Dezful, Iran
来源
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA | 2020年 / 24卷 / 02期
基金
美国国家科学基金会;
关键词
Annihilator graph; planarity; toroidality;
D O I
10.12097/ACUTM.2020.24.19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity, and let Z(R) be the set of zero-divisors of R. The annihilator graph of R is defined as the undirected graph AG(R) with the vertex set Z(R)* = Z(R) \ {0}, and two distinct vertices x and y are adjacent if and only if ann (R)(xy) not equal ann (R)(x) boolean OR ann (R)(y). In this paper, all rings whose annihilator graphs can be embedded on the plane or torus are classified.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 19 条
[1]   ON THE REGULAR DIGRAPH OF IDEALS OF COMMUTATIVE RINGS [J].
Afkhami, M. ;
Karimi, M. ;
Khashyarmanesh, K. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (02) :177-189
[2]   Some results on the intersection graph of ideals of matrix algebras [J].
Akbari, S. ;
Nikandish, R. .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (02) :195-206
[3]   THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING [J].
Alibemani, Abolfazl ;
Bakhtyiari, Moharram ;
Nikandish, Reza ;
Nikmehr, Mohammad Javad .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (02) :417-429
[4]   BECK COLORING OF A COMMUTATIVE RING [J].
ANDERSON, DD ;
NASEER, M .
JOURNAL OF ALGEBRA, 1993, 159 (02) :500-514
[5]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[6]   ON THE DOT PRODUCT GRAPH OF A COMMUTATIVE RING [J].
Badawi, Ayman .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) :43-50
[7]   ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING [J].
Badawi, Ayman .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (01) :108-121
[8]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[9]  
Bruns W, 1993, COHEN MACAULAY RINGS
[10]   RINGS WITH FEW ZERO DIVISORS [J].
CORBAS, B .
MATHEMATISCHE ANNALEN, 1969, 181 (01) :1-&