Impedance-based temperature measurement method for organic light-emitting diodes (OLEDs)

被引:7
|
作者
Raijmakers, L. H. J. [1 ,2 ]
Buechel, M. [3 ]
Notten, P. H. L. [2 ,4 ,5 ]
机构
[1] Delft Univ Technol, NL-2629 JB Delft, Netherlands
[2] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[3] OLEDWorks GmbH, D-52068 Aachen, Germany
[4] Forschungszentrum Julich, IEK 9, D-52425 Julich, Germany
[5] Univ Technol Sydney, Sydney, NSW 2007, Australia
关键词
Organic light emitting diode; Temperature measurement; Electrochemical impedance spectroscopy; LI-ION BATTERIES; SPECTROSCOPY; DISPLAYS;
D O I
10.1016/j.measurement.2018.03.058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This short communication presents a method to measure the integral temperature of organic light-emitting diodes (OLEDs). Based on electrochemical impedance measurements at OLEDs, a non-zero intercept frequency (NZIF) can be determined which is related to the OLED temperature. The NZIF is defined as the frequency at which the imaginary part of the impedance is equal to a predefined (non-zero) constant. The advantage of using an impedance-based temperature indication method through an NZIF is that no hardware temperature sensors are required and that temperature measurements can be performed relatively fast. An experimental analysis reveals that the NZIF is clearly temperature dependent and, moreover, also DC current dependent. Since the NZIF can readily be measured this impedance-based temperature indication method is therefore simple and convenient for many applications using OLEDs and offers an alternative for traditional temperature sensing.
引用
收藏
页码:26 / 29
页数:4
相关论文
共 50 条
  • [1] Organic light-emitting diodes (OLEDs) - the basis of next generation light-emitting devices
    Tomova, R.
    Petrova, P.
    Buroff, A.
    Stoycheva-Topalova, R.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2007, 39 (04): : 247 - 259
  • [2] Measurement of the Thermal Impedance of Light-Emitting Diodes and Light-Emitting Diode Matrices
    V. I. Smirnov
    V. A. Sergeev
    A. A. Gavrikov
    Measurement Techniques, 2017, 60 : 46 - 51
  • [3] Device engineering aspects of Organic Light-Emitting Diodes (OLEDs)
    Kumar, Sangeetha Ashok
    Shankar, Jaya Seeli
    Periyasamy, Bhuvana K.
    Nayak, Sanjay K.
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2019, 58 (15): : 1597 - 1624
  • [4] Study on the degradation mechanism of organic light-emitting diodes (OLEDs)
    Zou, DC
    Yahiro, M
    Tsutsui, T
    SYNTHETIC METALS, 1997, 91 (1-3) : 191 - 193
  • [5] Sustainable metal complexes for organic light-emitting diodes (OLEDs)
    Bizzarri, Claudia
    Spuling, Eduard
    Knoll, Daniel M.
    Volz, Daniel
    Braese, Stefan
    COORDINATION CHEMISTRY REVIEWS, 2018, 373 : 49 - 82
  • [6] Dynamic Characterization and Modeling of Organic Light-Emitting Diodes (OLEDs)
    Bender, Vitor C.
    Barth, Norton D.
    Camponogara, Marina
    Pinto, Rafael A.
    Marchesan, Tiago B.
    Marcos Alonso, J.
    2015 51ST IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2015,
  • [7] Optical sensors based on monolithic integrated organic light-emitting diodes (OLEDs)
    Reckziegel, S.
    Kreye, D.
    Puegner, T.
    Grillberger, C.
    Toerker, M.
    Vogel, U.
    Amelung, J.
    OPTICAL SENSORS 2008, 2008, 7003
  • [8] MEASUREMENT OF THE THERMAL IMPEDANCE OF LIGHT-EMITTING DIODES AND LIGHT-EMITTING DIODE MATRICES
    Smirnov, V. I.
    Sergeev, V. A.
    Gavrikov, A. A.
    MEASUREMENT TECHNIQUES, 2017, 60 (01) : 46 - 51
  • [9] OLEDs - organic light emitting diodes
    Reuschling, Ralf
    Wedel, Armin
    Vakuum in Forschung und Praxis, 2000, 12 (06) : 379 - 381
  • [10] Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs)
    Sun, Dianming
    Ren, Zhongjie
    Bryce, Martin R.
    Yan, Shouke
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (37) : 9496 - 9508