A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-Center Study

被引:47
作者
Meng, Lingwei [1 ,2 ]
Dong, Di [1 ,2 ]
Li, Liang [3 ]
Niu, Meng [4 ,5 ]
Bai, Yan [6 ,7 ]
Wang, Meiyun [6 ,7 ]
Qiu, Xiaoming [8 ]
Zha, Yunfei [3 ]
Tian, Jie [2 ,9 ,10 ]
机构
[1] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, CAS Key Lab Mol Imaging, Inst Automat, Beijing 100190, Peoples R China
[3] Wuhan Univ, Renmin Hosp, Dept Radiol, Wuhan 430060, Peoples R China
[4] China Med Univ, Hosp 1, Dept Intervent Radiol, Shenyang, Liaoning, Peoples R China
[5] Harbin Med Univ, Affiliated Hosp 2, Harbin, Heilongjiang, Peoples R China
[6] Zhengzhou Univ, Henan Prov Peoples Hosp, Dept Med Imaging, Zhengzhou, Henan, Peoples R China
[7] Zhengzhou Univ, Peoples Hosp, Zhengzhou, Henan, Peoples R China
[8] Hubei Polytech Univ, Edong Healthcare Grp, Affiliated Hosp, Dept Radiol,Huangshi Cent Hosp, Huangshi, Hubei, Peoples R China
[9] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R China
[10] Jinan Univ, Zhuhai Peoples Hosp, Zhuhai 519000, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
COVID-19; Computed tomography; Lung; Hospitals; Biomedical imaging; Training; Coronavirus disease 2019 (COVID-19); prognosis; computed tomography; deep learning; artificial intelligence; CORONAVIRUS DISEASE 2019; WEIGHTED YOUDEN INDEX; PREDICT; CURVES;
D O I
10.1109/JBHI.2020.3034296
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since its outbreak in December 2019, the persistent coronavirus disease (COVID-19) became a global health emergency. It is imperative to develop a prognostic tool to identify high-risk patients and assist in the formulation of treatment plans. We retrospectively collected 366 severe or critical COVID-19 patients from four centers, including 70 patients who died within 14 days (labeled as high-risk patients) since their initial CT scan and 296 who survived more than 14 days or were cured (labeled as low-risk patients). We developed a 3D densely connected convolutional neural network (termed De-COVID19-Net) to predict the probability of COVID-19 patients belonging to the high-risk or low-risk group, combining CT and clinical information. The area under the curve (AUC) and other evaluation techniques were used to assess our model. The De-COVID19-Net yielded an AUC of 0.952 (95% confidence interval, 0.928-0.977) on the training set and 0.943 (0.904-0.981) on the test set. The stratified analyses indicated that our model's performance is independent of age, sex, and with/without chronic diseases. The Kaplan-Meier analysis revealed that our model could significantly categorize patients into high-risk and low-risk groups (p < 0.001). In conclusion, De-COVID19-Net can non-invasively predict whether a patient will die shortly based on the patient's initial CT scan with an impressive performance, which indicated that it could be used as a potential prognosis tool to alert high-risk patients and intervene in advance.
引用
收藏
页码:3576 / 3584
页数:9
相关论文
共 37 条
[1]   Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT [J].
Bai, Harrison X. ;
Wang, Robin ;
Xiong, Zeng ;
Hsieh, Ben ;
Chang, Ken ;
Halsey, Kasey ;
Thi My Linh Tran ;
Choi, Ji Whae ;
Wang, Dong-Cui ;
Shi, Lin-Bo ;
Mei, Ji ;
Jiang, Xiao-Long ;
Pan, Ian ;
Zeng, Qiu-Hua ;
Hu, Ping-Feng ;
Li, Yi-Hui ;
Fu, Fei-Xian ;
Huang, Raymond Y. ;
Sebro, Ronnie ;
Yu, Qi-Zhi ;
Atalay, Michael K. ;
Liao, Wei-Hua .
RADIOLOGY, 2020, 296 (03) :E156-E165
[2]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[3]   Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J].
Chen, Nanshan ;
Zhou, Min ;
Dong, Xuan ;
Qu, Jieming ;
Gong, Fengyun ;
Han, Yang ;
Qiu, Yang ;
Wang, Jingli ;
Liu, Ying ;
Wei, Yuan ;
Xia, Jia'an ;
Yu, Ting ;
Zhang, Xinxin ;
Zhang, Li .
LANCET, 2020, 395 (10223) :507-513
[4]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[5]  
Dhama K, 2020, CLIN MICROBIOL REV, V33, DOI [10.1038/s41432-020-0088-4, 10.1128/CMR.00028-20]
[6]   Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study [J].
Dong, D. ;
Fang, M. -J. ;
Tang, L. ;
Shan, X. -H. ;
Gao, J. -B. ;
Giganti, F. ;
Wang, R. -P. ;
Chen, X. ;
Wang, X. -X. ;
Palumbo, D. ;
Fu, J. ;
Li, W. -C. ;
Li, J. ;
Zhong, L. -Z. ;
De Cobelli, F. ;
Ji, J. -F. ;
Liu, Z. -Y. ;
Tian, J. .
ANNALS OF ONCOLOGY, 2020, 31 (07) :912-920
[7]   Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J].
Dong, D. ;
Tang, L. ;
Li, Z. -Y ;
Fang, M-J ;
Gao, J-B ;
Shan, X-H ;
Ying, X-J ;
Sun, Y-S ;
Fu, J. ;
Wang, X-X ;
Li, L-M ;
Li, Z-H ;
Zhang, D-F ;
Zhang, Y. ;
Li, Z-M ;
Shan, F. ;
Bu, Z-D ;
Tian, J. ;
Ji, J-F .
ANNALS OF ONCOLOGY, 2019, 30 (03) :431-438
[8]   The Role of Imaging in the Detection and Management of COVID-19: A Review [J].
Dong, Di ;
Tang, Zhenchao ;
Wang, Shuo ;
Hui, Hui ;
Gong, Lixin ;
Lu, Yao ;
Xue, Zhong ;
Liao, Hongen ;
Chen, Fang ;
Yang, Fan ;
Jin, Ronghua ;
Wang, Kun ;
Liu, Zhenyu ;
Wei, Jingwei ;
Mu, Wei ;
Zhang, Hui ;
Jiang, Jingying ;
Tian, Jie ;
Li, Hongjun .
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 :16-29
[9]   CT radiomics can help screen the Coronavirus disease 2019 (COVID-19): a preliminary study [J].
Fang, Mengjie ;
He, Bingxi ;
Li, Li ;
Dong, Di ;
Yang, Xin ;
Li, Cong ;
Meng, Lingwei ;
Zhong, Lianzhen ;
Li, Hailin ;
Li, Hongjun ;
Tian, Jie .
SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (07)
[10]   Clinical Characteristics of Coronavirus Disease 2019 in China [J].
Guan, W. ;
Ni, Z. ;
Hu, Yu ;
Liang, W. ;
Ou, C. ;
He, J. ;
Liu, L. ;
Shan, H. ;
Lei, C. ;
Hui, D. S. C. ;
Du, B. ;
Li, L. ;
Zeng, G. ;
Yuen, K. -Y. ;
Chen, R. ;
Tang, C. ;
Wang, T. ;
Chen, P. ;
Xiang, J. ;
Li, S. ;
Wang, Jin-lin ;
Liang, Z. ;
Peng, Y. ;
Wei, L. ;
Liu, Y. ;
Hu, Ya-hua ;
Peng, P. ;
Wang, Jian-ming ;
Liu, J. ;
Chen, Z. ;
Li, G. ;
Zheng, Z. ;
Qiu, S. ;
Luo, J. ;
Ye, C. ;
Zhu, S. ;
Zhong, N. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18) :1708-1720