ON THE MEROMORPHIC NON-INTEGRABILITY OF SOME N-BODY PROBLEMS

被引:16
|
作者
Morales-Ruiz, Juan J. [1 ]
Simon, Sergi [2 ]
机构
[1] Univ Politecn Madrid, Ingn Civil ETSI Caminos, Dept Matemat & Informat Aplicadas, E-28040 Madrid, Spain
[2] Univ Limoges, XLIM UMR CNRS 6172, Dept Math Informat, F-87060 Limoges, France
关键词
Obstructions to integrability (nonintegrability criteria) in Hamiltonian systems; differential algebra; Dynamical systems in classical and celestial mechanics; N-body problems; REGULAR POLYGON SOLUTIONS; RELATIVE EQUILIBRIUM; INTEGRAL MANIFOLDS; SIMPLER PROOF; NONEXISTENCE; OPERATORS; THEOREM;
D O I
10.3934/dcds.2009.24.1225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a proof of the meromorphic non-integrability of the planar N-Body Problem for some special cases. A simpler proof is added to those already existing for the Three-Body Problem with arbitrary masses. The N-Body Problem with equal masses is also proven non-integrable. Furthermore, a new general result on additional integrals is obtained which, applied to these specific cases, proves the non-existence of an additional integral for the general Three-Body Problem, and provides for an upper bound on the amount of additional integrals for the equal-mass Problem for N = 4, 5, 6. These results appear to qualify differential Galois theory, and especially a new incipient theory stemming from it, as an amenable setting for the detection of obstructions to Hamiltonian integrability.
引用
收藏
页码:1225 / 1273
页数:49
相关论文
共 50 条
  • [41] On marginal deformations and non-integrability
    Dimitrios Giataganas
    Leopoldo A. Pando Zayas
    Konstantinos Zoubos
    Journal of High Energy Physics, 2014
  • [42] Non-integrability of ABC flow
    Maciejewski, A
    Przybylska, M
    PHYSICS LETTERS A, 2002, 303 (04) : 265 - 272
  • [43] NON-INTEGRABILITY OF THE SUSLOV PROBLEM
    Maciejewski, A. J.
    Przybylska, M.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (01): : 73 - 80
  • [44] On marginal deformations and non-integrability
    Giataganas, Dimitrios
    Zayas, Leopoldo A. Pando
    Zoubos, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [45] Non-integrability of the Karabut system
    Christov, Ognyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 91 - 97
  • [46] Non-integrability in Hamiltonian mechanics
    Ichtiaroglou, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1996, 65 (1-2): : 21 - 31
  • [47] PERIODIC-SOLUTIONS TO SOME PROBLEMS OF N-BODY TYPE
    MAJER, P
    TERRACINI, S
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (04) : 381 - 404
  • [48] Constrained n-Body Problems
    Szuminski, Wojciech
    Przybylska, Maria
    APPLIED NON-LINEAR DYNAMICAL SYSTEMS, 2014, 93 : 305 - 317
  • [49] Non-integrability of the planar elliptic restricted three-body problem
    Maria Przybylska
    Andrzej J. Maciejewski
    Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [50] Integrability and non-integrability for marginal deformations of 4d N=2 SCFTs
    Pal, Jitendra
    Roychowdhury, Sourav
    Lala, Arindam
    Roychowdhury, Dibakar
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, (10):