Meeting the Challenges of High-Dimensional Single-Cell Data Analysis in Immunology

被引:51
|
作者
Patil, Subarea [1 ,2 ,3 ]
Heuser, Christoph [1 ,2 ,3 ]
de Almeida, Gustavo P. [1 ,2 ,3 ]
Theis, Fabian J. [4 ,5 ]
Zielinski, Christina E. [1 ,2 ,3 ]
机构
[1] Tech Univ Munich, TranslaTUM, Munich, Germany
[2] Tech Univ Munich, Inst Virol, Munich, Germany
[3] German Ctr Infect Res, Partner Site Munich, Munich, Germany
[4] Helmholtz Zenbum Munchen, Inst Computat Biol, Neuherberg, Germany
[5] Tech Univ Munich, Dept Math, Munich, Germany
来源
FRONTIERS IN IMMUNOLOGY | 2019年 / 10卷
关键词
high-dimensional data analysis; CyTOF; single-cell profiling; single-cell genomics; visualization; trajectory inference; systems immunology; FLOW-CYTOMETRY; VISUALIZATION; HIERARCHY; MAPS;
D O I
10.3389/fimmu.2019.01515
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Recent advances in cytometry have radically altered the fate of single-cell proteomics by allowing a more accurate understanding of complex biological systems. Mass cytometry (CyTOF) provides simultaneous single-cell measurements that are crucial to understand cellular heterogeneity and identify novel cellular subsets. High-dimensional CyTOF data were traditionally analyzed by gating on bivariate dot plots, which are not only laborious given the quadratic increase of complexity with dimension but are also biased through manual gating. This review aims to discuss the impact of new analysis techniques for in-depths insights into the dynamics of immune regulation obtained from static snapshot data and to provide tools to immunologists to address the high dimensionality of their single-cell data.
引用
收藏
页数:12
相关论文
共 50 条
  • [2] Tools for the analysis of high-dimensional single-cell RNA sequencing data
    Wu, Yan
    Zhang, Kun
    NATURE REVIEWS NEPHROLOGY, 2020, 16 (07) : 408 - 421
  • [3] Diffusion maps for high-dimensional single-cell analysis of differentiation data
    Haghverdi, Laleh
    Buettner, Florian
    Theis, Fabian J.
    BIOINFORMATICS, 2015, 31 (18) : 2989 - 2998
  • [4] Tools for the analysis of high-dimensional single-cell RNA sequencing data
    Yan Wu
    Kun Zhang
    Nature Reviews Nephrology, 2020, 16 : 408 - 421
  • [5] SCALABLE VISUALIZATION FOR HIGH-DIMENSIONAL SINGLE-CELL DATA
    Kim, Juho
    Russell, Nate
    Peng, Jian
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 623 - 634
  • [6] Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre
    Ashhurst, Thomas Myles
    Marsh-Wakefield, Felix
    Putri, Givanna Haryono
    Spiteri, Alanna Gabrielle
    Shinko, Diana
    Read, Mark Norman
    Smith, Adrian Lloyd
    King, Nicholas Jonathan Cole
    CYTOMETRY PART A, 2022, 101 (03) : 237 - 253
  • [7] Robust lineage reconstruction from high-dimensional single-cell data
    Giecold, Gregory
    Marco, Eugenio
    Garcia, Sara P.
    Trippa, Lorenzo
    Yuan, Guo-Cheng
    NUCLEIC ACIDS RESEARCH, 2016, 44 (14)
  • [8] High-Dimensional Single-Cell Cancer Biology
    Irish, Jonathan M.
    Doxie, Deon B.
    HIGH-DIMENSIONAL SINGLE CELL ANALYSIS: MASS CYTOMETRY, MULTI-PARAMETRIC FLOW CYTOMETRY AND BIOINFORMATIC TECHNIQUES, 2014, 377 : 1 - 21
  • [9] High-dimensional single-cell analysis of human natural killer cell heterogeneity
    Rebuffet, Lucas
    Melsen, Janine E.
    Escaliere, Bertrand
    Basurto-Lozada, Daniela
    Bhandoola, Avinash
    Bjorkstrom, Niklas K.
    Bryceson, Yenan T.
    Castriconi, Roberta
    Cichocki, Frank
    Colonna, Marco
    Davis, Daniel M.
    Diefenbach, Andreas
    Ding, Yi
    Haniffa, Muzlifah
    Horowitz, Amir
    Lanier, Lewis L.
    Malmberg, Karl-Johan
    Miller, Jeffrey S.
    Moretta, Lorenzo
    Narni-Mancinelli, Emilie
    O'Neill, Luke A. J.
    Romagnani, Chiara
    Ryan, Dylan G.
    Sivori, Simona
    Sun, Dan
    Vagne, Constance
    Vivier, Eric
    NATURE IMMUNOLOGY, 2024, 25 (08) : 1474 - 1488
  • [10] High-Dimensional Overdispersed Generalized Factor Model With Application to Single-Cell Sequencing Data Analysis
    Nie, Jinyu
    Qin, Zhilong
    Liu, Wei
    STATISTICS IN MEDICINE, 2024, 43 (25) : 4836 - 4849