The Banach-Saks property in rearrangement invariant spaces

被引:28
作者
Dodds, PG [1 ]
Semenov, EM
Sukochev, FA
机构
[1] Flinders Univ S Australia, Sch Informat & Engn, Bedford Pk, SA 5042, Australia
[2] Voronezh State Univ, Dept Math, Voronezh 394693, Russia
关键词
D O I
10.4064/sm162-3-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the Banach-Saks property in rearrangement invariant spaces on the positive half-line. A principal result of the paper shows that a separable rearrangement invariant space E with the Fatou property has the Banach-Saks property if and only if E has the Banach-Saks property for disjointly supported sequences. We show further that for Orlicz and Lorentz spaces, the Banach-Saks property is equivalent to separability although the separable parts of some Marcinkiewicz spaces fail the BanachSaks property.
引用
收藏
页码:263 / 294
页数:32
相关论文
共 35 条
[1]   UNCONDITIONAL BASES AND MARTINGALES IN LP(F) [J].
ALDOUS, DJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1979, 85 (JAN) :117-123
[2]  
Alexopoulos J., 1994, Quaest Math., V17, P231, DOI [10.1080/16073606.1994.9631762, DOI 10.1080/16073606.1994.9631762]
[3]  
[Anonymous], 1982, TRANSL MATH MONOGR
[4]   Systems of random variables equivalent in distribution to the Rademacher system and K-closed representability of Banach couples [J].
Astashkin, SV .
SBORNIK MATHEMATICS, 2000, 191 (5-6) :779-807
[5]  
BAERNSTEIN A, 1972, STUD MATH, V17, P91
[6]  
Banach S., 1930, STUD MATH, V2, P51
[7]  
Bennett C., 1988, INTERPOLATION OPERAT
[8]  
Carothers N.L., 1986, TEX FUNCT AN SEM 198, P107
[9]   SUBSPACES OF LP,Q [J].
CAROTHERS, NL ;
DILWORTH, SJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (02) :537-545
[10]   The Kadec-Klee property in symmetric spaces of measurable operators [J].
Chilin, VI ;
Dodds, PG ;
Sukochev, FA .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 97 (1) :203-219