The Effect of Temperature on Cache Size Tuning for Low Energy Embedded Systems

被引:0
作者
Noori, Hamid [1 ]
Goudarzi, Maziar
Inoue, Koji [1 ]
Murakami, Kazuaki [1 ]
机构
[1] Kyushu Univ, Dept Informat, Grad Sch Informat Sci & Elect Engn, Fukuoka 812, Japan
来源
GLSVLSI'07: PROCEEDINGS OF THE 2007 ACM GREAT LAKES SYMPOSIUM ON VLSI | 2007年
关键词
Temperature-Aware Design; Cache Memory; Leakage Current; Low Energy; Embedded Systems;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Energy consumption is a major concern in embedded computing systems. Several studies have shown that cache memories account for about 40% or more of the total energy consumed in these systems. In older technology nodes, active power was the primary contributor to total power dissipation of a CMOS design. However, with the scaling of feature sizes, the share of leakage in total power consumption of digital systems continues to grow. Temperature is a factor which exponentially increases the leakage current. In this paper, we show the effects of temperature on the selection of optimal cache size for low energy embedded systems. Our results show that for a given application, the optimal cache size selection is affected by the temperature. Our experiments have been done for 100nm technology. Our study reveals that the cache size selection for different temperatures depends on the rate at which cache miss increases when reducing the cache size. When the miss rate increases sharply the optimal point is the same for all examined temperatures, however when it becomes smoother, the optimal point for different temperatures begin to get farther.
引用
收藏
页码:453 / 456
页数:4
相关论文
共 5 条
  • [1] ALBONESI DH, 1999, 32 ANN ACM IEEE INT
  • [2] Cai Y., 2006, CACHE SIZE SELECTION
  • [3] TARJAN D, 2006, CACTI 4 0
  • [4] ZHANG C, 2004, DESIGN AUTOMATION TE
  • [5] Zhang C., 2005, ACM T EMBEDDED COMPU, V4