On a phase field approximation of the planar Steiner problem: Existence, regularity, and asymptotic of minimizers

被引:6
作者
Bonnivard, Matthieu [1 ]
Lemenant, Antoine [1 ]
Millot, Vincent [1 ]
机构
[1] Univ Paris Diderot Paris 7, Lab Jacques Louis Lions, CNRS UMR 7598, UFR Math, Batiment Sophie Germain, F-75205 Paris 13, France
关键词
Steiner problem; gamma-convergence; Ginzburg-Landau; Modica-Mortola; phase field approximation; LENGTH; MINIMIZATION;
D O I
10.4171/IFB/397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider and analyse a variant of a functional originally introduced in [9, 27] to approximate the (geometric) planar Steiner problem. This functional depends on a small parameter epsilon > 0 and resembles the (scalar) Ginzburg-Landau functional from phase transitions. In a first part, we prove existence and regularity of minimizers for this functional. Then we provide a detailed analysis of their behavior as epsilon -> 0, showing in particular that sublevel sets Hausdorff converge to optimal Steiner sets. Applications to the average distance problem and optimal compliance are also discussed.
引用
收藏
页码:69 / 106
页数:38
相关论文
共 37 条
  • [1] Adams R. A., 2003, SOBOLEV SPACES
  • [2] APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE
    AMBROSIO, L
    TORTORELLI, VM
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) : 999 - 1036
  • [3] AMBROSIO L, 1992, B UNIONE MAT ITAL, V6B, P105
  • [4] Ambrosio L., 2004, OXFORD LECT SERIES M, V25
  • [5] Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
  • [6] ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL
    BETHUEL, F
    BREZIS, H
    HELEIN, F
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) : 123 - 148
  • [7] OPTIMAL SHAPES MAXIMIZING THE STEKLOV EIGENVALUES
    Bogosel, B.
    Bucur, D.
    Giacomini, A.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) : 1645 - 1680
  • [8] Bonafini M., ARXIV161003839
  • [9] APPROXIMATION OF LENGTH MINIMIZATION PROBLEMS AMONG COMPACT CONNECTED SETS
    Bonnivard, Matthieu
    Lemenant, Antoine
    Santambrogio, Filippo
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (02) : 1489 - 1529
  • [10] Numerical experiments in revisited brittle fracture
    Bourdin, B
    Francfort, GA
    Marigo, JJ
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (04) : 797 - 826