The Small Inductive Dimension of Subsets of Alexandroff Spaces

被引:1
|
作者
Chatyrko, Vitalij A. [1 ]
Han, Sang-Eon [2 ]
Hattori, Yasunao [3 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Dept Math Educ, 567 Baekje Daero, Jeonju Si 54896, Jeollabuk Do, South Korea
[3] Shimane Univ, Dept Math, Matsue, Shimane 6908504, Japan
基金
日本学术振兴会; 新加坡国家研究基金会;
关键词
small inductive dimension; Khalimsky line; Alexandroff space;
D O I
10.2298/FIL1611007C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the small inductive dimension ind in the class of Alexandroff spaces by the use of some standard spaces. Then for ind we suggest decomposition, sum and product theorems in the class. The sum and product theorems there we prove even for the small transfinite inductive dimension trind. As an application of that, for each positive integers k, n such that k <= n we get a simple description in terms of even and odd numbers of the family S(k, n) = {S subset of K-n : vertical bar S vertical bar = k + 1 and ind S = k}, where K is the Khalimsky line.
引用
收藏
页码:3007 / 3014
页数:8
相关论文
共 50 条
  • [31] On Homotopy Types of Alexandroff Spaces
    Kukiela, Michal Jerzy
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2010, 27 (01): : 9 - 21
  • [32] On the triviality of flows in Alexandroff spaces
    Chocano, Pedro J.
    Ruiz, Diego Mondejar
    Moron, Manuel A.
    del Portal, Francisco R. Ruiz
    TOPOLOGY AND ITS APPLICATIONS, 2023, 339
  • [33] AN AXIOMATIC CHARACTERIZATION OF LARGE INDUCTIVE DIMENSION FOR METRIC SPACES
    SAKAI, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1968, 44 (08): : 782 - &
  • [34] Bi-Alexandroff spaces
    Matutu, Phethiwe
    QUAESTIONES MATHEMATICAE, 2007, 30 (01) : 57 - 65
  • [35] The proper homotopy of Alexandroff spaces
    Fernandez-Bayort, Tomas
    Luque, Alvaro
    Quintero, Antonio
    QUAESTIONES MATHEMATICAE, 2024, 47 (07) : 1413 - 1428
  • [36] ON I-ALEXANDROFF AND Ig-ALEXANDROFF IDEAL TOPOLOGICAL SPACES
    Ekici, Erdal
    FILOMAT, 2011, 25 (04) : 99 - 108
  • [37] On some weaker forms of Alexandroff spaces
    Arenas, FG
    Dontchev, J
    Ganster, M
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1998, 23 (1A): : 79 - 89
  • [38] The Alexandroff Dimension of Quotients of R2
    Petra Wiederhold
    Richard G. Wilson
    Discrete & Computational Geometry, 2004, 32 : 149 - 160
  • [39] The Correspondence Between Graphs and Alexandroff Spaces
    Al Harbi, Badr
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (01): : 451 - 457
  • [40] Topological realizations of groups in Alexandroff spaces
    Chocano, Pedro J.
    Moron, Manuel A.
    Ruiz del Portal, Francisco
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (01)