Occlusion-aware light field depth estimation using side window angular coherence

被引:3
|
作者
Ma, Shuai [1 ,2 ,3 ]
Guo, Zhenghua [1 ,2 ,3 ]
Wu, Junlong [1 ,2 ,3 ]
Yan, Xu [1 ,2 ,3 ]
Zhu, Licheng [1 ,2 ,3 ]
Yang, Ping [1 ,2 ]
Wang, Shuai [1 ,2 ]
Wen, Lianghua [4 ]
Xu, Bing [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Adapt Opt, Chengdu 610209, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Yibin Univ, Div Intelligent Mfg, Yibin 644000, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1364/AO.411070
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Depth estimation is crucial in many light field applications. However, the accuracy of light field depth estimation is prone to be affected by occlusions. In this paper, a method of side window angular coherence is proposed to handle different types of occlusions, and the ability of the proposed method to resist occlusions is theoretically analyzed. The angular patch is divided into several discrete side window subsets. These subsets are a pure occluder-type subset, a pure object point-type subset, and a hybrid-type subset. The photo-consistency of the pure object point-type subset can reflect the true depth. Meanwhile, the occlusion edges can be detected to identify occluded points and nonoccluded points so the robustness of the algorithm can be further enhanced by processing the two types of points. Moreover, fast guided filtering is applied to cost volume for improving the accuracy of depth estimation. Experimental results demonstrate that our method outperforms the state-of-the-art depth estimation methods on both synthetic and real scenes, especially near occlusion boundaries. (C) 2021 Optical Society of America
引用
收藏
页码:392 / 404
页数:13
相关论文
共 50 条
  • [1] Occlusion-Aware Depth Estimation Using Sparse Light Field Coding
    Johannsen, Ole
    Sulc, Antonin
    Goldluecke, Bastian
    PATTERN RECOGNITION, GCPR 2016, 2016, 9796 : 207 - 218
  • [2] Occlusion-aware Depth Estimation Using Light-field Cameras
    Wang, Ting-Chun
    Efros, Alexei A.
    Ramamoorthi, Ravi
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3487 - 3495
  • [3] Light field depth estimation using occlusion-aware consistency analysis
    Wang, Xuechun
    Chao, Wentao
    Wang, Liang
    Duan, Fuqing
    VISUAL COMPUTER, 2023, 39 (08): : 3441 - 3454
  • [4] Light field depth estimation using occlusion-aware consistency analysis
    Xuechun Wang
    Wentao Chao
    Liang Wang
    Fuqing Duan
    The Visual Computer, 2023, 39 : 3441 - 3454
  • [5] Occlusion-aware light field depth estimation with view attention
    Wang, Xucheng
    Tao, Chenning
    Zheng, Zhenrong
    OPTICS AND LASERS IN ENGINEERING, 2023, 160
  • [6] Occlusion-Aware Cost Constructor for Light Field Depth Estimation
    Wang, Yingqian
    Wang, Longguang
    Liang, Zhengyu
    Yang, Jungang
    An, Wei
    Guo, Yulan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19777 - 19786
  • [7] ACCURATE LIGHT FIELD DEPTH ESTIMATION VIA AN OCCLUSION-AWARE NETWORK
    Guo, Chunle
    Jin, Jing
    Hou, Junhui
    Chen, Jie
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [8] Occlusion-aware depth estimation for light field using multi-orientation EPIs
    Sheng, Hao
    Zhao, Pan
    Zhang, Shuo
    Zhang, Jun
    Yang, Da
    PATTERN RECOGNITION, 2018, 74 : 587 - 599
  • [9] A Novel Occlusion-Aware Vote Cost for Light Field Depth Estimation
    Han, Kang
    Xiang, Wei
    Wang, Eric
    Huang, Tao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8022 - 8035
  • [10] OccCasNet: Occlusion-Aware Cascade Cost Volume for Light Field Depth Estimation
    Chao, Wentao
    Duan, Fuqing
    Wang, Xuechun
    Wang, Yingqian
    Lu, Ke
    Wang, Guanghui
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 1680 - 1691