Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle

被引:52
作者
Furrer, Fabian [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 04期
基金
日本学术振兴会;
关键词
Quantum cryptography;
D O I
10.1103/PhysRevA.90.042325
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A big challenge in continuous-variable quantum key distribution is to prove security against arbitrary coherent attacks including realistic assumptions such as finite-size effects. Recently, such a proof has been presented in [Phys. Rev. Lett. 109, 100502 (2012)] for a two-mode squeezed state protocol based on a novel uncertainty relation with quantum memories. But the transmission distances were fairly limited due to a direct reconciliation protocol. We prove here security against coherent attacks of a reverse-reconciliation protocol under similar assumptions but allowing distances of over 16 km for experimentally feasible parameters. We further clarify the limitations when using the uncertainty relation with quantum memories in security proofs of continuous-variable quantum key distribution.
引用
收藏
页数:12
相关论文
共 42 条
[1]  
Ben-Or M, 2005, LECT NOTES COMPUT SC, V3378, P386
[2]  
Berta M., ARXIV13084527
[3]  
Berta M., ARXIV11075460
[4]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[5]  
CARTER JL, 1979, J COMPUT SYST SCI, V18, P143, DOI 10.1016/0022-0000(79)90044-8
[6]   Quantum distribution of Gaussian keys using squeezed states -: art. no. 052311 [J].
Cerf, NJ ;
Lévy, M ;
Van Assche, G .
PHYSICAL REVIEW A, 2001, 63 (05) :523111-523115
[7]   Postselection Technique for Quantum Channels with Applications to Quantum Cryptography [J].
Christandl, Matthias ;
Koenig, Robert ;
Renner, Renato .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[8]   Distillation of secret key and entanglement from quantum states [J].
Devetak, I ;
Winter, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :207-235
[9]  
Eberle T., ARXIV14066174
[10]   Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source [J].
Eberle, Tobias ;
Haendchen, Vitus ;
Duhme, Joerg ;
Franz, Torsten ;
Werner, Reinhard F. ;
Schnabel, Roman .
PHYSICAL REVIEW A, 2011, 83 (05)