Electrical transport properties of Ca0.9La0.1-xBixMnO3-δ (0 ≤ x ≤ 0.1) thermoelectric materials

被引:10
作者
Kim, C. M. [1 ]
Seo, J. W. [1 ]
Cha, J. S. [1 ]
Park, K. [1 ]
机构
[1] Sejong Univ, Fac Nanotechnol & Adv Mat Engn, Seoul 143747, South Korea
基金
新加坡国家研究基金会;
关键词
Thermoelectricity; Thermoelectric materials; Power factor; Electrical conductivity; Thermoelectric power generation; WASTE HEAT; TEMPERATURE-DEPENDENCE; POWER; EFFICIENCY; SYSTEM; MODULE; MODEL; IMPROVEMENT; SIMULATION; GENERATION;
D O I
10.1016/j.ijhydene.2015.09.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of Ca0.9La0.1-xBixMnO3-delta (0 <= x <= 0.1) was fabricated by cold compaction and tape casting methods. The microstructural and thermoelectric properties of Ca0.9La0.1-xBixMnO3-delta were studied, with respect to the partial substitution of Bi3+ for La3+. All of the sintered Ca0.9La0.1-xBixMnO3-delta crystallized in the orthorhombic perovskite structure, belonging to the Pnma space group. The substituted Bi3+ significantly increased grain size and density because it acted as a sintering additive. The electrical conductivities of tape casting-processed Ca0.9La0.1-xBixMnO3-delta were much higher than those of cold compactionprocessed Ca0.9La0.1-xBixMnO3-delta. On the other hand, the absolute values of the Seebeck coefficient for tape casting-processed Ca0.9La0.1-xBixMnO3-delta were similar to those of cold compaction-processed Ca0.9La0.1-xBixMnO3-delta. Consequently, tape casting-processed Ca0.9La0.1-xBixMnO3-delta showed a much higher power factor in comparison with cold compaction-processed Ca0.9La0.1-xBixMnO3-delta. The partial substitution of La3+ by Bi3+ up to x = 0.05 led to an increase in the power factor. The highest power factor (3.01 x 10(-4) Wm(-1).K-2) was obtained for tape casting-processed Ca0.9La0.1-xBixMnO3-delta at 800 degrees C. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:15556 / 15568
页数:13
相关论文
共 53 条
  • [31] Analytical model of parallel thermoelectric generator
    Liang, Gaowei
    Zhou, Jiemin
    Huang, Xuezhang
    [J]. APPLIED ENERGY, 2011, 88 (12) : 5193 - 5199
  • [32] Lira Hernández I. A., 2009, Superf. vacío, V22, P49
  • [33] Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering
    Liu, YH
    Lin, YH
    Shi, Z
    Nan, CW
    Shen, ZJ
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (05) : 1337 - 1340
  • [34] Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery
    Love, N. D.
    Szybist, J. P.
    Sluder, C. S.
    [J]. APPLIED ENERGY, 2012, 89 (01) : 322 - 328
  • [35] Preparation of Ca0.8Sm0.2MnO3 powders and effects of calcination temperature on structure and electrical property
    Meng, Xianwei
    Hao, Sue
    Li, Jialong
    Fu, Qiuyue
    Fu, Dongsheng
    [J]. POWDER TECHNOLOGY, 2012, 224 : 96 - 100
  • [36] Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides
    Mouyane, Mohamed
    Itaalit, Brahim
    Bernard, Jerome
    Houivet, David
    Noudem, Jacques G.
    [J]. POWDER TECHNOLOGY, 2014, 264 : 71 - 77
  • [37] Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion
    Park, K.
    Lee, G. W.
    [J]. ENERGY, 2013, 60 : 87 - 93
  • [38] Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation
    Park, K.
    Hwang, H. K.
    Seo, J. W.
    Seo, W. -S.
    [J]. ENERGY, 2013, 54 : 139 - 145
  • [39] Thermoelectric Properties of Ca1-x-yDyxCeyMnO3 for Power Generation
    Park, K.
    Lee, G. W.
    Jung, J.
    Kim, S. -J.
    Lim, Y. -S.
    Choi, S. -M.
    Seo, W. -S.
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (08) : 7176 - 7179
  • [40] Optimum selection (design) of thermoelectric modules for large capacity heat pump applications
    Riffat, SB
    Ma, XL
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2004, 28 (14) : 1231 - 1242