Entanglement monogamy relations of qubit systems

被引:122
作者
Zhu, Xue-Na [1 ]
Fei, Shao-Ming [2 ,3 ]
机构
[1] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 02期
关键词
Quantum computers;
D O I
10.1103/PhysRevA.90.024304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the monogamy relations related to the concurrence and the entanglement of formation. General monogamy inequalities given by the alpha th power of concurrence and entanglement of formation are presented for N-qubit states. The monogamy relation for entanglement of assistance is also established. Based on these general monogamy relations, the residual entanglement of concurrence and entanglement of formation are studied. Some relations among the residual entanglement, entanglement of assistance, and three tangle are also presented.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]   A note on invariants and entanglements [J].
Albeverio, S ;
Fei, SM .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2001, 3 (04) :223-227
[3]   Exploring multipartite quantum correlations with the square of quantum discord [J].
Bai, Yan-Kui ;
Zhang, Na ;
Ye, Ming-Yong ;
Wang, Z. D. .
PHYSICAL REVIEW A, 2013, 88 (01)
[4]   Entanglement monogamy and entanglement evolution in multipartite systems [J].
Bai, Yan-Kui ;
Ye, Ming-Yong ;
Wang, Z. D. .
PHYSICAL REVIEW A, 2009, 80 (04)
[5]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[6]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[7]   Optimal entanglement criterion for mixed quantum states [J].
Breuer, Heinz-Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[8]   Separability criteria and bounds for entanglement measures [J].
Breuer, Heinz-Peter .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (38) :11847-11860
[9]   Concurrence of arbitrary dimensional bipartite quantum states [J].
Chen, K ;
Albeverio, S ;
Fei, SM .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[10]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5