COMPARING CODIMENSION AND ABSOLUTE LENGTH IN COMPLEX REFLECTION GROUPS

被引:8
作者
Foster-Greenwood, Briana [1 ]
机构
[1] Idaho State Univ, Dept Math, Pocatello, ID 83209 USA
关键词
Codimension; Hochschild cohomology; Partial orders; Reflection groups; Reflection length; HECKE ALGEBRAS; PARTIAL ORDER; COHOMOLOGY;
D O I
10.1080/00927872.2013.810748
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Reflection length and codimension of fixed point spaces induce partial orders on a complex reflection group. Motivated by connections to the algebraic structure of cohomology governing deformations of skew group algebras, we show that Coxeter groups and the infinite family G(m, 1, n) are the only irreducible complex reflection groups for which reflection length and codimension coincide. We then discuss implications for the degrees of generators of Hochschild cohomology. Along the way, we describe the codimension atoms for the infinite family G(m, p, n), give algorithms using character theory, and determine two-variable Poincare polynomials recording reflection length and codimension.
引用
收藏
页码:4350 / 4365
页数:16
相关论文
共 26 条
[1]   Algebra structure on the Hochschild cohomology of the ring of invariants of a Weyl algebra under a finite group [J].
Alvarez, MS .
JOURNAL OF ALGEBRA, 2002, 248 (01) :291-306
[2]   The dual braid monoid [J].
Bessis, D .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (05) :647-683
[3]   Cyclic Sieving of Noncrossing Partitions for Complex Reflection Groups [J].
Bessis, David ;
Reiner, Victor .
ANNALS OF COMBINATORICS, 2011, 15 (02) :197-222
[4]   K(π, 1)'s for Artin groups of finite type [J].
Brady, T ;
Watt, C .
GEOMETRIAE DEDICATA, 2002, 94 (01) :225-250
[5]   A partial order on the orthogonal group [J].
Brady, T ;
Watt, C .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (08) :3749-3754
[6]   A partial order on the symmetric group and new K(π,1)′s for the braid groups [J].
Brady, T .
ADVANCES IN MATHEMATICS, 2001, 161 (01) :20-40
[7]  
Brady T, 2008, T AM MATH SOC, V360, P1983
[8]  
CARTER RW, 1972, COMPOS MATH, V25, P1
[9]   DEGENERATE AFFINE HECKE ALGEBRAS AND YANGIANS [J].
DRINFELD, VG .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1986, 20 (01) :58-60
[10]   Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism [J].
Etingof, P ;
Ginzburg, V .
INVENTIONES MATHEMATICAE, 2002, 147 (02) :243-348