Weak value amplification for nonunitary evolution

被引:7
作者
Liu, Wei-Tao [1 ,2 ]
Martinez-Rincon, Julian [3 ]
Howell, John C. [4 ,5 ,6 ]
机构
[1] Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Interdisciplinary Ctr Quantum Informat, Changsha 410073, Hunan, Peoples R China
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[4] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[5] Univ Rochester, Ctr Coherence & Quantum Opt, Rochester, NY 14627 USA
[6] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
基金
中国国家自然科学基金;
关键词
LIGHT; SPIN;
D O I
10.1103/PhysRevA.100.012125
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss interferometric parameter estimation of the amplitude, instead of the phase, via weak value amplification. The considered weak interaction introduces modulation on the amplitude of the wave function; therefore, the two-party state experiences a nonunitary evolution. With the same pre- and postselection states as those of original weak value amplification, a much larger anomalous amplification factor can be attained. The shift in the intensity profile at the dark port and the signal-to-noise ratio for the parameter of interest get further amplified by the weak value, compared to phase-based weak value amplification. Although the nonunitary evolution introduces loss, more information about the parameter of interest can be extracted. Thus the weak value amplification is extended to measurement of amplitude and nonunitary processes. We also discuss possible applications of this idea for precisely measuring tiny rotations or enhancing the image contrast of transparent objects.
引用
收藏
页数:6
相关论文
共 31 条
[1]   HOW THE RESULT OF A MEASUREMENT OF A COMPONENT OF THE SPIN OF A SPIN-1/2 PARTICLE CAN TURN OUT TO BE 100 [J].
AHARONOV, Y ;
ALBERT, DZ ;
VAIDMAN, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (14) :1351-1354
[2]   Measuring Small Longitudinal Phase Shifts: Weak Measurements or Standard Interferometry? [J].
Brunner, Nicolas ;
Simon, Christoph .
PHYSICAL REVIEW LETTERS, 2010, 105 (01)
[3]   Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification [J].
Dixon, P. Ben ;
Starling, David J. ;
Jordan, Andrew N. ;
Howell, John C. .
PHYSICAL REVIEW LETTERS, 2009, 102 (17)
[4]   Colloquium: Understanding quantum weak values: Basics and applications [J].
Dressel, Justin ;
Malik, Mehul ;
Miatto, Filippo M. ;
Jordan, Andrew N. ;
Boyd, Robert W. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :307-316
[5]   Weak-value thermostat with 0.2 mK precision [J].
Egan, Patrick ;
Stone, Jack A. .
OPTICS LETTERS, 2012, 37 (23) :4991-4993
[6]   Amplifying Single-Photon Nonlinearity Using Weak Measurements [J].
Feizpour, Amir ;
Xing, Xingxing ;
Steinberg, Aephraim M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[7]   Weak Value Amplification is Suboptimal for Estimation and Detection [J].
Ferrie, Christopher ;
Combes, Joshua .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[8]   Precision angle sensor using an optical lever inside a Sagnac interferometer [J].
Hogan, J. M. ;
Hammer, J. ;
Chiow, S. -W. ;
Dickerson, S. ;
Johnson, D. M. S. ;
Kovachy, T. ;
Sugarbaker, A. ;
Kasevich, M. A. .
OPTICS LETTERS, 2011, 36 (09) :1698-1700
[9]   Observation of the spin Hall effect of light via weak measurements [J].
Hosten, Onur ;
Kwiat, Paul .
SCIENCE, 2008, 319 (5864) :787-790
[10]   Interferometric weak value deflections: Quantum and classical treatments [J].
Howell, John C. ;
Starling, David J. ;
Ben Dixon, P. ;
Vudyasetu, Praveen K. ;
Jordan, Andrew N. .
PHYSICAL REVIEW A, 2010, 81 (03)