2D-Stochastic Currents over the Wiener Sheet

被引:2
作者
Flandoli, Franco [1 ]
Imkeller, Peter [2 ]
Tudor, Ciprian A. [3 ,4 ]
机构
[1] Univ Pisa, Dipartimento Matemat Applicata, I-56126 Pisa, Italy
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[3] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[4] Acad Econ Studies, Dept Math, Bucharest, Romania
关键词
Currents; Multiple stochastic integrals; Brownian sheet; Two-parameter processes; FRACTIONAL BROWNIAN-MOTION; STOCHASTIC CURRENTS; LOCAL-TIMES; REGULARITY; R(D);
D O I
10.1007/s10959-012-0453-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By using stochastic calculus for two-parameter processes and chaos expansion into multiple Wiener-It integrals, we define a 2D-stochastic current over the Brownian sheet. This concept comes from geometric measure theory. We also study the regularity of the stochastic current with respect to the randomness in the Watanabe spaces and with respect to the spatial variable in the deterministic Sobolev spaces.
引用
收藏
页码:552 / 575
页数:24
相关论文
共 21 条
[11]  
IMKELLER P, 1984, ANN I H POINCARE-PR, V20, P75
[12]   CHAOS EXPANSIONS OF DOUBLE INTERSECTION LOCAL TIME OF BROWNIAN-MOTION IN R(D) AND RENORMALIZATION [J].
IMKELLER, P ;
PEREZABREU, V ;
VIVES, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 56 (01) :1-34
[13]  
Kuo H.-H., 1996, White Noise Distribution Theory
[14]  
Malliavin P., 1997, Stochastic Analysis
[15]  
Morgan F., 1988, GEOMETRIC MEASURE TH
[16]  
Nualart D., 1981, ANN I H POINCARE, V20, P251
[17]  
Nualart D., 1992, POTENTIAL ANAL, V1, P257
[18]  
Nualart David, 2006, The Malliavin Calculus and Related Topics, V1995
[19]  
SIMON L, 1983, P CTR MATH ANAL, V3
[20]  
TUDOR CA, 2003, ELECTRON J PROBAB, V8, P1