2D-Stochastic Currents over the Wiener Sheet

被引:2
作者
Flandoli, Franco [1 ]
Imkeller, Peter [2 ]
Tudor, Ciprian A. [3 ,4 ]
机构
[1] Univ Pisa, Dipartimento Matemat Applicata, I-56126 Pisa, Italy
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[3] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[4] Acad Econ Studies, Dept Math, Bucharest, Romania
关键词
Currents; Multiple stochastic integrals; Brownian sheet; Two-parameter processes; FRACTIONAL BROWNIAN-MOTION; STOCHASTIC CURRENTS; LOCAL-TIMES; REGULARITY; R(D);
D O I
10.1007/s10959-012-0453-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By using stochastic calculus for two-parameter processes and chaos expansion into multiple Wiener-It integrals, we define a 2D-stochastic current over the Brownian sheet. This concept comes from geometric measure theory. We also study the regularity of the stochastic current with respect to the randomness in the Watanabe spaces and with respect to the spatial variable in the deterministic Sobolev spaces.
引用
收藏
页码:552 / 575
页数:24
相关论文
共 21 条
[1]   Tanaka formula for the fractional Brownian motion [J].
Coutin, L ;
Nualart, D ;
Tudor, CA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (02) :301-315
[2]  
Dozzi M., 1989, Stochastic Processes with a Multidimensional Parameter
[3]   Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters [J].
Eddahbi, M ;
Lacayo, R ;
Solé, JL ;
Vives, J ;
Tudor, CA .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (02) :383-400
[4]  
Federer H., 1969, GEOMETRIC MEASURE TH
[5]   Stochastic currents [J].
Flandoli, F ;
Gubinelli, M ;
Giaquinta, M ;
Tortorelli, VM .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (09) :1583-1601
[6]  
Flandoli F., 2002, P ASC 2002 BIRKH BAS
[7]   On the regularity of stochastic currents, fractional Brownian motion and applications to a turbulence model [J].
Flandoli, Franco ;
Gubinelli, Massimiliano ;
Russo, Francesco .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (02) :545-576
[8]   Brownian and fractional Brownian stochastic currents via Malliavin calculus [J].
Flandoli, Franco ;
Tudor, Ciprian A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (01) :279-306
[9]  
Giaquinta M., 1998, CARTESIAN CURRENTS C, V37
[10]   THE ASYMPTOTIC-BEHAVIOR OF LOCAL-TIMES AND OCCUPATION INTEGRALS OF THE N-PARAMETER WIENER PROCESS IN R(D) [J].
IMKELLER, P ;
WEISZ, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 98 (01) :47-75