Implementation of Clifford gates in the Ising-anyon topological quantum computer

被引:37
作者
Ahlbrecht, Andre [1 ]
Georgiev, Lachezar S. [1 ,2 ]
Werner, Reinhard F. [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Phys, D-38106 Braunschweig, Germany
[2] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 03期
关键词
anyons; group theory; Ising model; quantum gates; STATISTICS; COMPUTATION;
D O I
10.1103/PhysRevA.79.032311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We give a general proof for the existence and realizability of Clifford gates in the Ising topological quantum computer. We show that all quantum gates that can be implemented by braiding of Ising anyons are Clifford gates. We find that the braiding gates for two qubits exhaust the entire two-qubit Clifford group. Analyzing the structure of the Clifford group for n >= 3 qubits we prove that the image of the braid group is a nontrivial subgroup of the Clifford group so that not all Clifford gates could be implemented by braiding in the Ising topological quantum computation scheme. We also point out which Clifford gates cannot in general be realized by braiding.
引用
收藏
页数:16
相关论文
共 32 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]   A statistical mechanics view on Kitaev's proposal for quantum memories [J].
Alicki, R. ;
Fannes, M. ;
Horodecki, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6451-6467
[3]  
[Anonymous], 1989, Bell's Theorem, Quantum Theory, and Conceptions of the Universe
[4]  
Birman J, 1974, BRAIDS LINKS MAPPING
[5]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[6]   Topologically protected qubits from a possible non-Abelian fractional quantum Hall state [J].
Das Sarma, S ;
Freedman, M ;
Nayak, C .
PHYSICAL REVIEW LETTERS, 2005, 94 (16)
[7]  
Di Francesco P., 1997, CONFORMAL FIELD THEO, DOI DOI 10.1007/978-1-4612-2256-9
[8]   TWO-DIMENSIONAL CONFORMAL QUANTUM-FIELD THEORY [J].
FURLAN, P ;
SOTKOV, GM ;
TODOROV, IT .
RIVISTA DEL NUOVO CIMENTO, 1989, 12 (06) :1-202
[9]   Topologically protected gates for quantum computation with non-Abelian anyons in the Pfaffian quantum Hall state [J].
Georgiev, Lachezar S. .
PHYSICAL REVIEW B, 2006, 74 (23)
[10]   Towards a universal set of topologically protected gates for quantum computation with Pfaffian qubits [J].
Georgiev, Lachezar S. .
NUCLEAR PHYSICS B, 2008, 789 (03) :552-590