Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen

被引:943
作者
Shcherbak, Iurii [1 ,2 ,3 ]
Millar, Neville [1 ,2 ,3 ]
Robertson, G. Philip [1 ,2 ,3 ]
机构
[1] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA
[2] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA
[3] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
fertilizer response; greenhouse gas emissions; agriculture; bioenergy; greenhouse gas mitigation; AGRICULTURE; FIELDS;
D O I
10.1073/pnas.1322434111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nitrous oxide (N2O) is a potent greenhouse gas (GHG) that also depletes stratospheric ozone. Nitrogen (N) fertilizer rate is the best single predictor of N2O emissions from agricultural soils, which are responsible for similar to 50% of the total global anthropogenic flux, but it is a relatively imprecise estimator. Accumulating evidence suggests that the emission response to increasing N input is exponential rather than linear, as assumed by Intergovernmental Panel on Climate Change methodologies. We performed a metaanalysis to test the generalizability of this pattern. From 78 published studies (233 site-years) with at least three N-input levels, we calculated N2O emission factors (EFs) for each nonzero input level as a percentage of N input converted to N2O emissions. We found that the N2O response to N inputs grew significantly faster than linear for synthetic fertilizers and for most crop types. N-fixing crops had a higher rate of change in EF (Delta EF) than others. A higher.EF was also evident in soils with carbon > 1.5% and soils with pH < 7, and where fertilizer was applied only once annually. Our results suggest a general trend of exponentially increasing N2O emissions as N inputs increase to exceed crop needs. Use of this knowledge in GHG inventories should improve assessments of fertilizer-derived N2O emissions, help address disparities in the global N2O budget, and refine the accuracy of N2O mitigation protocols. In low-input systems typical of sub-Saharan Africa, for example, modest N additions will have little impact on estimated N2O emissions, whereas equivalent additions (or reductions) in excessively fertilized systems will have a disproportionately major impact.
引用
收藏
页码:9199 / 9204
页数:6
相关论文
共 37 条
[1]  
[Anonymous], 2013, MATHEMATICA
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Direct emission of nitrous oxide from agricultural soils [J].
Bouwman, AF .
NUTRIENT CYCLING IN AGROECOSYSTEMS, 1996, 46 (01) :53-70
[4]  
Bouwman AF, 2002, GLOBAL BIOGEOCHEM CY, V16, DOI [10.1029/2001GB001812, 10.1029/2001GB001811]
[5]  
BOUWMAN AF, 1990, SOILS AND THE GREENHOUSE EFFECT, P61
[6]   N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels [J].
Crutzen, P. J. ;
Mosier, A. R. ;
Smith, K. A. ;
Winiwarter, W. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (02) :389-395
[7]   The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860 [J].
Davidson, Eric A. .
NATURE GEOSCIENCE, 2009, 2 (09) :659-662
[8]  
de Klein C, 2006, IPCC GUIDELINES NATL, V4, P111
[9]   NITROUS-OXIDE EMISSIONS FROM FERTILIZED SOILS - SUMMARY OF AVAILABLE DATA [J].
EICHNER, MJ .
JOURNAL OF ENVIRONMENTAL QUALITY, 1990, 19 (02) :272-280
[10]  
Everitt B.S., 1992, The analysis of contingency tables