Impact of Criegee Intermediate Reactions with Peroxy Radicals on Tropospheric Organic Aerosol

被引:26
作者
Chhantyal-Pun, Rabi [1 ]
Khan, M. Anwar H. [1 ]
Zachhuber, Nicholas [1 ]
Percival, Carl J. [2 ]
Shallcross, Dudley E. [1 ]
Orr-Ewing, Andrew J. [1 ]
机构
[1] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
来源
ACS EARTH AND SPACE CHEMISTRY | 2020年 / 4卷 / 10期
基金
英国自然环境研究理事会; 美国国家航空航天局;
关键词
atmospheric chemistry; Criegee intermediates; peroxy radicals; radical reactions; secondary organic aerosol; cavity ring-down spectroscopy; chemical transport modeling; GAS-PHASE OZONOLYSIS; DIRECT KINETIC MEASUREMENTS; PURE COMPONENT PROPERTIES; CRI MECHANISM; MONOTERPENE OZONOLYSIS; TEMPERATURE-DEPENDENCE; ATMOSPHERIC CHEMISTRY; PHOTOCHEMICAL DATA; GLOBAL CHEMISTRY; POTENTIAL SOURCE;
D O I
10.1021/acsearthspacechem.0c00147
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Peroxy radicals and carbonyl oxides (Criegee intermediates) are produced in the troposphere during OH and ozone-initiated oxidation of hydrocarbons. Reactions between these species have previously been shown to form highly oxidized molecules which can condense to form secondary organic aerosols. Here, cavity ring-down spectroscopy coupled with laser flash photolysis was used to measure directly rate coefficients for reactions of CH2OO with CH3O2 and CH3C(O)O-2. The rate coefficients were found to be similar within the measurement uncertainties and only weakly dependent on temperature (in the range 243-310 K) and pressure (20-100 Torr, N-2). A combined rate coefficient of k (CH2OO + RO2, RO2 = CH3O2/CH3C(O)O-2) = (2.4 +/- 1.2) x 10(-11) cm(3) molecule(-1) s(-1) was obtained under these conditions. Global modeling using STOCHEM-CRI, updated with monoterpene chemistry generating Criegee intermediates and supplemented by regional box modeling, shows that this class of Criegee intermediate + peroxy radical reactions can contribute up to similar to 1.3% of secondary organic aerosol production in forested regions of the world.
引用
收藏
页码:1743 / 1755
页数:13
相关论文
共 73 条
[41]   Global analysis of peroxy radicals and peroxy radical-water complexation using the STOCHEM-CRI global chemistry and transport model [J].
Khan, M. A. H. ;
Cooke, M. C. ;
Utembe, S. R. ;
Archibald, A. T. ;
Derwent, R. G. ;
Jenkin, M. E. ;
Morris, W. C. ;
South, N. ;
Hansen, J. C. ;
Francisco, J. S. ;
Percival, C. J. ;
Shallcross, D. E. .
ATMOSPHERIC ENVIRONMENT, 2015, 106 :278-287
[42]   Direct evidence for a substantive reaction between the Criegee intermediate, CH2OO, and the water vapour dimer [J].
Lewis, Tom R. ;
Blitz, Mark A. ;
Heard, Dwayne E. ;
Seakins, Paul W. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) :4859-4863
[43]   Temperature dependence of the reaction of anti-CH3CHOO with water vapor [J].
Lin, Liang-Chun ;
Chao, Wen ;
Chang, Chun-Hung ;
Takahashi, Kaito ;
Lin, Jim Jr-Min .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (40) :28189-28197
[44]   Rate coefficient of the reaction CH2OO + NO2 probed with a quantum-cascade laser near 11 μm [J].
Luo, Pei-Ling ;
Chung, Chen-An ;
Lee, Yuan-Pern .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (32) :17578-17583
[45]   Criegee Intermediate-Alcohol Reactions, A Potential Source of Functionalized Hydroperoxides in the Atmosphere [J].
McGillen, Max R. ;
Curchod, Basile F. E. ;
Chhantyal-Pun, Rabi ;
Beames, Joseph M. ;
Watson, Nathan ;
Khan, M. Anwar H. ;
McMahon, Laura ;
Shallcross, Dudley E. ;
Orr-Ewing, Andrew J. .
ACS EARTH AND SPACE CHEMISTRY, 2017, 1 (10) :664-672
[46]   The Origin of the Reactivity of the Criegee Intermediate: Implications for Atmospheric Particle Growth [J].
Miliordos, Evangelos ;
Xantheas, Sotiris S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (03) :1015-1019
[47]   Estimation of pure component properties Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions [J].
Nannoolal, Y ;
Rarey, J ;
Ramjugernath, D ;
Cordes, W .
FLUID PHASE EQUILIBRIA, 2004, 226 :45-63
[48]   Estimation of pure component properties - Part 3. Estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions [J].
Nannoolal, Yash ;
Rarey, Juergen ;
Ramjugernath, Deresh .
FLUID PHASE EQUILIBRIA, 2008, 269 (1-2) :117-133
[49]   The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling [J].
Newland, Mike J. ;
Rickard, Andrew R. ;
Sherwen, Tomas ;
Evans, Mathew J. ;
Vereecken, Luc ;
Munoz, Amalia ;
Rodenas, Milagros ;
Bloss, William J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (08) :6095-6120
[50]   Theoretical study of the gas-phase ozonolysis of β-pinene (C10H16) [J].
Nguyen, T. L. ;
Peeters, J. ;
Vereecken, L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (27) :5643-5656