Asymptotic algorithm for computing the sample variance of interval data

被引:0
作者
Kolacz, A. [1 ]
Grzegorzewski, P. [1 ,2 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Koszykowa 75, PL-00662 Warsaw, Poland
[2] Polish Acad Sci, Syst Res Inst, Newelska 6, PL-01447 Warsaw, Poland
来源
IRANIAN JOURNAL OF FUZZY SYSTEMS | 2019年 / 16卷 / 04期
关键词
Data analysis; interval data; sample variance; DISCRIMINANT-ANALYSIS; UNCERTAINTY; REGRESSION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of the sample variance computation for epistemic interval-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the sample variance in a feasible time is proposed. Conditions required for its application with finite samples are discussed and some properties of the algorithm are also given. It appears that our new algorithm could be effectively applied in definitely more situations than methods used so far.
引用
收藏
页码:83 / 96
页数:14
相关论文
共 32 条
  • [1] Support vector machines for interval discriminant analysis
    Angulo, C.
    Anguita, D.
    Gonzalez-Abril, L.
    Ortega, J. A.
    [J]. NEUROCOMPUTING, 2008, 71 (7-9) : 1220 - 1229
  • [2] Use of Genetic Algorithms When Computing Variance of Interval Data
    Antoch, Jaromir
    Miele, Raffaele
    [J]. CLASSIFICATION AND MULTIVARIATE ANALYSIS FOR COMPLEX DATA STRUCTURES, 2011, : 371 - +
  • [3] A set arithmetic-based linear regression model for modelling interval-valued responses through real-valued variables
    Blanco-Fernandez, Angela
    Colubi, Ana
    Garcia-Barzana, Marta
    [J]. INFORMATION SCIENCES, 2013, 247 : 109 - 122
  • [4] Regime change analysis of interval-valued time series with an application to PM10
    Cappelli, Carmela
    D'Urso, Pierpaolo
    Di Iorio, Francesca
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 146 : 337 - 346
  • [5] Couso I, 2014, INT J APPROX REASON, V55, P1502, DOI 10.1016/j.ijar.2013.07.002
  • [6] A least squares approach to principal component analysis for interval valued data
    D'Urso, P
    Giordani, P
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2004, 70 (02) : 179 - 192
  • [7] Trimmed fuzzy clustering for interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (01) : 21 - 40
  • [8] Dantsin E., 2006, Reliable Computing, V12, P273, DOI 10.1007/s11155-006-9001-x
  • [9] Logistic regression-based pattern classifiers for symbolic interval data
    de Souza, Renata M. C. R.
    Queiroz, Diego C. F.
    Cysneiros, Francisco Jose A.
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2011, 14 (03) : 273 - 282
  • [10] Exact bounds on finite populations of interval data
    Ferson, Scott
    Ginzburg, Lev
    Kreinovich, Vladik
    Longpré, Luc
    Aviles, Monica
    [J]. Reliable Computing, 2005, 11 (03) : 207 - 233